MIL-DTL-24643 (M24643) 船用電纜

MIL-DTL-24643(M24643)船用電纜是重量輕,低煙(極輕微的白煙),不自燃也不助燃的耐火焰的電纜,在燃燒時不會發出有毒煙霧,如:戴奧辛。這些特性使得 MIL-DTL-24643 是可用的整體最安全的船用電纜,這就是為什麼美國海軍選擇特定的海洋應用設計,種類較多樣齊全。本產品也常被使用於隧道、地鐵、捷運系統中,可以選擇水密或非水密建築以及軟性或非軟性的設計。某些電纜品項還可選的鋁或鋼盔甲,較易防壓迫損壞和老鼠啃咬,提供更多的保護和安全性。

M24643 船用電纜的常用用途有:

電力電纜 / 控制和照明電纜 / 電子產品 / 通訊和儀表電纜 / 專用電纜

MIL-DTL-24643 船舶電纜可以具有單根導體或多根導體,以及不同絕緣和屏蔽隔離材料的許多配置。由於驗證的電線設計可靠性,符合嚴格的軍事規格,這種電線也是許多商業和工業應用的理想選擇。

注意: MIL-DTL-24643 取代了 MIL-C-24643 標準。

MIL-C-24643 軍規表示方式

M24643 / XX - YY - A or U - O or D or N

(1) (2) (3) (4)

(1) XX: 分項規範。

(2) YY:分項規範細目(詳細請洽佳昭公司)。

(3) A:有鎧甲。 U:無鎧甲。

(4) 0: 環繞一圈隔離。 D: 環繞二圈隔離。 N: 無隔離。

MIL-DTL-24643 產品規格

軍規型號	AWG~MCM 線徑	電壓/阻抗 (V/Ω)	導體形式	海軍類型 (A)鎧甲型	備註
M24643/1	3/5	600V	3+1 芯	LSCVSF	非防水
M24643/2	20~18	300V	2芯 3芯	LSDCOP LSTCOP	非防水
M24643/3	600	600V	1~4 芯	LSSHOF LSDHOF LSTHOF LSFHOF	非防水

M24643/4	20~18	600V	2~7 芯	LSMCOS	非防水
M24643/5	12~2	600V	19芯	LSMDU	防水
M24643/6	12~2	600V	19 芯	LSMDY	防水
M24643/7	16	600V	7~61 芯	LSMHOF	非防水
M24643/8	24	300V	5 芯	LSMMOP	非防水
M24643/9	20/16	300V	雙芯	LSMRI	非防水、無被覆
M24643/10	22	300V	5、10、30對	LSPBTM(U)	防水
M24643/11	22~300MCM	600V	單芯	LSSSF	防水
M24643/12	20~300MCM	300V	3、5、10、15對	LSTTOP	非防水
M24643/13	20	300V	2~16 對	LSTTRS(A)	非防水
M24643/14	3~2000MCM	1000V	單芯	LSSSGU(A)	防水
M24643/15	16~400MCM	1000V	双芯	LSDSGU(A)	防水
M24643/16	16~400MCM	1000V	3 范	LSTSGU(A)	防水
M24643/17	16~0000	1000V	4 芯	LSFSGU(A)	防水
M24643/18	18	1000V	7~91 芯	LSMSCU(A) LSMSCS	防水
M24643/19	0~0000	1000V	6 党	LS6SGU(A)	防水
M24643/20	16/14	1000V	7 芯	LS7SGU(A)	防水
M24643/21	14	1000V	1 對	LSTCJU(A) LSTCTU(A)	防水
M24643/22	0~ 400MCM	5000V	3芯	LS5KVTSGU(A)	防水
M24643/23	22	300V	1 1/2~60 對	LSTTSU(A)	防水
M24643/24	21/16	300V	1~12 對	LSTCJX LSTCKX LSTCTX	防水,熱電偶 J、K 型 矽膠被覆
M24643/25	18	300V	3~12 對	LSPI	非防水 矽膠被覆
M24643/26	16~9	600V	2~7 芯	LSDPS LSTPS LSFPS	防水 矽膠被覆

				LS7PS	
M24643/27	22	600V	40 對	LS2AU(A) LS2AUS	非防水
M24643/28	22	50±2Ω	16~70 芯	LS1S50M50MU(A) LS1S50MUS	非防水、衰減 18db/100FT@400MHz
M24643/29	20	300V	14 芯	LSMU(A) LSMUS	非防水
M24643/30	22	300V	2~30	LS1SWU(A)	防水
M24643/31	22	75±5Ω	3~61 對	LS2SU(A) LS2SUS	非防水 衰減 3db/100FT@3MHz
M24643/32	22	75±5Ω	3~61 對	LS2SWAU LS2SWA	防水 衰減 3db/100FT@3MHz
M24643/33	18	75±5Ω	1~44 對	LS2SWU(A)	防水、衰減 1.5db/100FT@1MHz
M24643/34	16	300V	37 芯	LSMS(A)	非防水
M24643/35	18	300V	3~44 組	LS3SU(A) LS3SUS	非防水
M24643/36	18	300V	3~44 組	LS3SWU(A) LS3SWUS	防水
M24643/37	18	300V	3~12組	LS3U(A)	非防水
M24643/38	20/18	600V	56 芯+8 對	LSECM(A)	防水
M24643/39	22/18	75±3Ω	8芯	LS1S75MU(A)	非防水、衰減 9db/100FT@400MHz
M24643/40	22/18	50±2Ω	5芯	LS1SMU(A)	非防水、衰減 18db/100FT@400MHz
M24643/41	20	-	44 芯	S1SAU(A)	非防水
M24643/42	20/18	-	36/60 芯	LS1SU(A)	非防水
M24643/43	22~14	-	2~4 芯	LS2SJ(A) LS3SJ(A) LS4SJ(A)	非防水
M24643/44	18	600V	7組	LS3SF	非防水
M24643/45	26	300V	10~60 對	LS2U(A)	非防水

		135±15Ω			
M24643/46	22	600V	40 對	LS2WAU LS2WA	防水
M24643/47	22	1000V	70 芯	LS1SMWU(A)	防水
M24643/48	16/0	1000V	2 芯	LSDNW(A)	非防水
M24643/49	16~000	1000V	3 芯	LSTNW(A)	非防水
M24643/50	16/7	1000V	4 芯	LSFNW(A)	非防水
M24643/51	18	1000V	7~44 芯	LSMNW(A)	非防水
M24643/52	22	300V	1 1/2~40 對	LSTPNW(A)	非防水
M24643/53	14	3000V	1~3 芯	LSSRW(A) LSDRW(A) LSTRW(A)	防水
M24643/54	12	300V	8 芯	LS8NW(A)	非防水
M24643/55	8	300V	4 芯	LS4NW(A)	非防水
M24643/56	16	300V	7 對	LS2SWL(A)	防水
M24643/57	26	300V	42 對	LS2UW(A)(S)	防水
M24643/58	26	300V/135± 10Ω	6~77 對	LS2CS	非防水
M24643/59	24	網路線	4 對	LSC5FS(W)-4 LSC5OS(W)-4	防水/無防水、隔離
M24643/60	24	網路線	4 對	LSC5(W)-4	防水/無防水、無隔離
M24643/61	24 26	網路線	4 對	LSC5P(OS)-4 LSC5POSR-4	無防水、隔離/無隔離
M24643/62	22	150V	1 對	LSPB2SD(W)-1 LSPB2SDOS(W)-1	防水/無防水、雙隔離
M24643/63	16~000	1000V	7芯	LSYSGU	-
M24643/64	24~14	600V	1~4 對	LSTPSJ	-
M24643/65	28	150V	3~6 同軸	LS3C179DT LS6C179DT	非防水
M24643/66	16~0000	1000V	2 芯	LS2OW	防水
M24643/67	16~400MCM	1000V	3 芯	LS3OW	防水

M24643/68	16~0000	1000V	4 芯	LS4OW	防水
M24643/69	16~0000	1000V	4 同軸	LSC264	防水
M24643/70	-	-	-	-	-
M24643/71	16/400MCM	1000V	單芯	LSSCF	非防水
M24643/72	4 (4AWG +16AWG)	1000V	4 芯+4 芯	LSFCF	非防水
M24643/73	0000	1000V	3 芯	LSTCF	非防水
M24643/74	-	-	-	-	-
M24643/75	24	300V	12 1/2 對	LSLCFS	非防水

防水,低可繞性產品:

電力與灯具用電纜

型式	標準型	加隔離層	加鎧甲		
			LSDPS	2 芯線	600 V
	LSDSGU		LSDSGA	2 芯線	1000 V
			LSTPS	3 芯線	600 V
	LSTSGU		LSTSGA	3 芯線	1000 V
			LSFPS	4 芯線	600 V
	LSFSGU		LSFSGA	4 芯線	1000 V
	LS6SGU		LS6SGA	6 芯線	1000 V
			LS7PS	7 芯線	600 V
	LS7SGU		LS7SGA	7 芯線	1000 V
	LSSSGU		LSSSGA	單一線	3000 V

控制用電纜

型式	標準型	加隔離層	加鎧甲			
	LSMSCU	LSMSCS*	LSMSCA	7 through 91 conductors	600 V	

訊號及儀器用電纜

型式	標準型	加隔離層	加鎧甲		
			LSTCKX	1, 3, 7 and 12 pairs	
	LSTCTU		LSTCTA	1 pair	
			LSTCTX	3, 7 and 12 pairs	
	LSTTSU		LSTTSA	1-1/2 through 60 pairs 300V	300 V

不防水,低可繞性產品

型式	標準型	加隔離層	加鎧甲		
	LSMDU		LSMDY	19 conductors	600 V
	LSSRW		LSSRWA	Single conductor	3000 V
	LSTRW		LSTRWA	3 conductors	3000 V

通訊及儀器用

型式	標準型	加隔離層	加鎧甲		
	LSDRW		LSDRWA	2 芯線	3000 V
	LSECM		LSECMA	56 conductors	600 V
	LSPBTMU		LSPBTM	Five, 15 and 30 pairs	
	LSTCJU		LSTCJA	One pair	
			LSTCJX	3, 7 and 12 pairs	
	LS1SMWU		LS1SMWA	70 shielded singles	
	LS1SWU		LS1SWA	2, 14, 20 and 30 shielded	
				singles	
	LS2SWAU		LS2SWA	3 through 61 shielded pairs	
	LS2SWU		LS2SWUA	1 through 61 shielded pairs	
		LS2WAU	LS2WA**	40 pair with overall shield	600 V
	LS3SWU	LS3SWUS*	LS3SWA	3 through 44 shield triads	
	LS2SWL-7		LS2SWLA-7	7 shielded pairs	
		LS2UW-42	LS2UWA-42**	42 pairs with overall shield	
		LS2UWS-42**			

不防水,低可繞性產品:

電力與灯具用電纜

型式	標準型	加隔離層	加鎧甲		
	LSDNW		LSDNWA	2 芯線	1000 V
	LSTNW		LSTNWA	3 芯線	1000 V
	LSFNW		LSFNWA	4 芯線	1000 V
		LS2SJ	LSTNWA**	2conductors with overall shield	600 V

控制用電纜

型式	標準型	加隔離層	加鎧甲		
	LSMNW		LSMNWA	7 through 44 conductors	1000 V
		LSMS	LSMSA**	37 conductors with overall	300 V
				shield	
	LSMU	LSMUS*	LSMA	14 芯線	300 V
	LS4NW*		LS4NWA8	4 芯線	
	LS8NW6		LS8NWA6	8 芯線	

通訊與儀器用

型式	標準型	加隔離層	加鎧甲		
	LSMRI			Twisted pair and triad	
			LSPI	3, 7, and 12 shield pairs	
	LSTPNW		LSTPNWA	1-1/2through 40 pairs	300 V
	LS1SAU		LS1SA	44 shielded singles	
	LS1SMU		LS1SMA	5 shielded singles	
	LS1SU		LS1SUA	36 and 60 shielded singles	
	LS1S50MU	LS1S50MUS*	LS1S50MA	16, 20, 40 and 70 shielded	
	1.61.675.1411		161675144	singles	
	LS1S75MU		LS1S75MA	8 shielded singles	
		LS2AU	LS2A**	40 pairs with overall shield	600 V
		LS2AUS*			
	LS2SU	LS2SUS*	LS2SA	3 through 61 shielded pairs	
		LS2U	LS2UA*	10 through 60 pairs with overall shield	
		LS3SJ	LS2JA**	3 conductors with overall shield	600 V
	LS3SU	LS3SUS*	LS3SA	3 through 44 shielded triads	
	LS3U		LS3UA	3, 7 and 12 triads	
		LS4SJ	LS4SJA**	4 conductors with overall shield	600 V
		LS2CS**		6, 18, 42, 60, and 77 pairs with double overall shield	

不防水,低可繞性產品:

電力與灯具用電纜

型式	標準型	加隔離層	加鎧甲		
	LSCVSF			4 conductors (3-#3 and 1-#5	600 V
				AWG)	
	LSDHOF			2 芯線	600 V
	LSTHOF			3 芯線, sizes 3 through 600	600 V
				AWG	
	LSFHOF			4 芯線(2-#6 AWG)	600 V
	LSSHOF			Single conductors, sizes 3	600 V
				through 800 AWG	
	LSSRW		LSSRWA	Single conductor	3000 V
	LSSSF			Single conductor	600 V

^{*}若需更詳細規格說明,請洽佳昭公司。

TYPE LSCVSF-4

MIL-C-24643/1 4 Conductors, 600 Volts Non- Watertight Flexing Service APPLICATIONS:

Type LSCVSF-4 Cable is a multi conductor oil resistant construction suitable for flexing service. It may be used in power and lighting applications. This cable is suitable for non-watertight application and should not be used to penetrate a water tight deck or bulkhead.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper
- 2 INSULATION: Four conductors, one uninsulated, separator and ethylene propylene rubber.
- 3. IDENTIFICATION: Standard identification code by Method 3.
- 4. ASSEMBLY: Insulated conductors cabled with uninsulated conductor in one valley, fillers, binder.
- 5. OVERALL JACKET: Crosslinked polyolefin.
- 6. AMPACITY: Calculated at 60Hz AC (rms) or DC for 75°C conductor temperature.

NEC Number	Military Part Number	Conductor Size	Number Of	Overall Diameter	Amps Per Co	nductor Max.	Approximate Weight Lbs.
Type and Size	M24643/1	AWG	Conductors	Max. IN	40°C	50°C	Ft.
LSCVSF-4	-01 UN	3(class K)	3	1.45	100	75	1.328
		5(class K)	1				

Note: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable,1986.

TYPE LSDCOP AND LSTCOP

MIL-C-24643/2

2 AND 3 Conductors, 300 Volts, Non-Watertight,

Flexing Service

APPLICATIONS:

Both type LSDCOP and LSTCOP cable are oil resistant portable cord type constructions suitable for flexing service. They may be used in electronic, communications, and instrumentation applications except where unusual circuit parameters require a special type of cable. These cables are not watertight and shall be used only for runs

within one compartment or within contiguous compartments. They shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

1. CONDUCTOR: Stranded bare copper.

2. INSULATION: Ethylene propylene rubber or crosslinked polyethylene.

3. IDENTIFCATION: Standard identification code by Method 3.

4. ASSEMBLY: Two or three conductors cabled with fillers, tie cord.

5. OVERALL JACKET: Crosslinked polyolefin. Surface marking.

NEC Number Type and	Military Part Number	Conductor Size	Number Of	Cabling Lay Max.	_	erall meter	Voltage Withstand Min	Cond.Resist 1000 Ft. Max	Approx. Wt Lbs.
Size	M24643/2	AWG	Cond.	IN	Min IN	Max IN	Volts	OHMS	Ft.
LSDCOP-1	-01 UN	20(class K)	2	1	.235	.250	1000	11.42	.031
LSDCOP-1/1-2	-02 UN	18(class K)	2	3/8	.300	.315	1500	13.00	.050
LSDCOP-2	-03 UN	18(class K)	2	2	.310	.330	1500	7.16	.052
LSTCOP-2	-04 UN	18(class K)	3	2	.325	.345	1500	7.16	.052

TYPE LSSHOF, LSDHOF, LSTHOF, LSFHOF

MIL-C-24643/3

1 through 4 Conductors, 600 Volts, Non- Watertight, Flexing Service APPLICATIONS:

Type HOF cables are multi conductor oil resistant constructions suitable for flexing service. They may be used in power and lighting applications. These cables are suitable for non-watertight applications and should not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

- 1. CONDUCTOR: Stranded bare copper with separator.
- 2. INSULATION: Ethylene propylene rubber.
- 3. IDENTIFCATION: Standard identification code by Method 3 or 4.
- 4. REINFORCEMENT: Reinforcement on SHOF sizes 23 and larger.
- 5. ASSEMBLY: The required number of conductors cabled with fillers and binder tape.
- 6. OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 7.AMPACITY: Calculated at 60hz AC (rms) or DC for 75 °C conductor temperature.

								An	nps	Appro
NEC	Military	Cond	luctor		Insulation	Ov	erall	Po	er	x.
Number	Part	Si	ize	Number	Thickness	Diar	neter	Cond	uctor	Wt
Type and	Number	Navy		Of						Lbs.
Size	M24643/3	Standard	AWG	Cond.	IN	Min IN	Max IN	40°C	50°C	Ft.
LSSHOF-3	-01 UN	16(Class M)		1	.031	.195	.210	20	28	.027
LSSHOF-23	-02 UN	7 (Class G)		1	.040	.0440	.460	88	80	.143
LSSHOF-60	-03 UN	60(304)		1	.050	.570	.600	162	153	.341
LSSHOF-150	-04 UN	150(760)		1	.070	.830	.870	285	263	.769
LSSHOF-200	-05 UN	200(988)		1	.070	.940	.980	323	306	.966
LSSHOF-250	-06 UN	250(1254)		1	.070	1.035	1.085	397	362	1.318
LSSHOF-500	-07 UN	5	00MCM (CI. G)	1	.090	1.380	1.450	602	578	2.585
LSSHOF-650	-08 UN	(650MCM (CI.G)	1	.100	1.540	1.610	698	658	3.090
LSSHOF-800	-09 UN	800(4033)		1	.100	1.600	1.670	803	732	3.306
LSSHOF-3	-10 UN		16(Class K)	2	.031	.405	.425	23	21	.101
LSSHOF-4	-11 UN		14(Class K)	2	.031	.440	.460	30	28	.117
LSSHOF-6	-12 UN		12(Class K)	2	.031	.490	.510	41	37	.150
LSSHOF-9	-13 UN		10(Class K)	2	.031	.540	.570	50	45	.172
LSSHOF-14	-14 UN	14(140)		2	.040	.675	.705	60	54	.293
LSSHOF-23	-15 UN		7(Class G)	2	.040	.820	.860	80	72	.395
LSSHOF-30	-16 UN		5(Class K)	2	.050	.920	.960	90	83	.690
LSSHOF-83	- 17 UN	83(418)		2	.070	1.390	1.450	169	152	1.359
LSSHOF-250	-18 UN	250(1254)		2	.070	2.000	2.100	322	287	2.811
LSSHOF-400	-19 UN	400(2052)		2	.090	2.400	2.500	422	382	4.532

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable,1986.

TYPE LSSHOF, LSDHOF, LSTHOF, LSFHOF

Continued

MIL-C-24643/3

1 through 4 Conductors, 600 Volts,

Non- Watertight, Flexing Service

								Am	nps	
NEC	Military	Co	onductor		Insulation	Ov	erall	Po	er	
Number	Part		Size	Number	Thickness	Diar	neter	Cond	uctor	Approx.
Type and	Number	Navy		Of						Wt Lbs.
Size	M24643/3	Standard	AWG	Cond.	IN	Min IN	Max IN	40°C	50°C	Ft.
LSTHOF-3	-20UN		16(Class K)	3	.031	.430	.450	19	17	.094
LSTHOF-4	-21UN		14(Class K)	3	.031	.460	.480	25	23	.136
LSTHOF-6	-22UN		12(Class K)	3	.031	.520	.550	33	31	. 17 9
LSTHOF-9	-23UN		10(Class K)	3	.031	.570	.600	38	34	.201
LSTHOF-14	-24UN	14(140)		3	.040	.720	.750	50	46	.346
LSTHOF-23	-25UN		7(Class G)	3	.040	.860	.900	70	64	.506
LSTHOF-42	-26UN	42(209)		3	.070	1.200	1.250	93	86	.986
LSTHOF-150	-27UN	150(760)		3	.070	1.740	1.820	197	180	2.479
LSTHOF-250	-28UN	250(1254)		3	.070	2.140	2.240	287	264	3.872
LSTHOF-400	-29UN	400(2052)		3	.090	2.680	2.800	400	365	6.128
LSTHOF-500	-30UN		500MCM(CI. K)	3	.090	2.920	3.100	500	450	7.313
LSTHOF-600	-31UN		600MCM(CI. K)	3	.100	2.980	3.150	600	550	7.873
LFTHOF-3	-32UN		16(Class K)	3	0.31	.460	.480	17	16	.130
LFTHOF-4	-33UN		14(Class K)	4	0.31	.520	.550	23	21	.165
LFTHOF-9	-34UN		10(Class K)	4	0.31	.630	.660	36	34	.281
LFTHOF-42	-35UN	42(209)		4	0.70	1.300	1.380	79	73	1.210
LFTHOF-60	-36UN	60(304)		4	0.70	1.430	1.510	95	80	1.550
LFTHOF-133	-37UN	133(684)		4	0.70	1.920	2.000	163	148	2.863

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable,1986.

TYPE LSMCOS

MIL-C-24643/4 Multi-Conductor, Shielded, 600 Volts, Non- Watertight, Flexing Service APPLICATIONS:

Type MCOS cables are oil resistant portable cord type constructions suitable for flexing service. They may be used in electronic, communications, and instrumentation applications except where unusual circuit parameters require a special type of cable. These cables are not watertight and shall be used only for runs within one compartment or within contiguous compartments. They shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

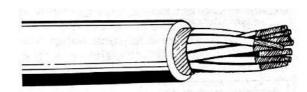
2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.

Sizes 2, 4, 7: Single conductors, special identification code by Method 3. The require number of conductors cabled with fillers, center of glass in size 7. Binder, braided uncoated copper shield. Separator, crosslinked polyolefin jacket.

Size 5: One shielded pair (black/white) and three singles (red, green, blue). Color coded by Method 3, cabled with fillers,

binder, crosslinked polyolefin jacket.

Size 6: Two shielded pairs (black/white, blue/red) and two singles (yellow, green), color coded by Method 3, cabled with


fillers, binder, crosslinked polyolefin jacket.

		Cond.		Insul.			Volt	age		Cond.	
		Size		Thick.	Diameter		Withstand			Resist	
							Cond.	Shield	Insulation	Per	
NEC	Military						to	to	Resist	1000	
Number	Part		No.				Cond.	Grd.	Per 100Ft.	Ft.	Approx.
Type and	Number		Of				Min	Min	Min	Max	Wt. Lbs
Size	M24643/4	AWG	Cond.	IN	Min IN	Max IN	Volts	Volts	Megohms	Ohms	Ft.
LSMCOS-2	-01UO	18(class K)	2	.023	.440	.460	2,000	1,500	200	6.96	.130
LSMCOS-4	-02UO	18(class K)	4	.023	.490	.510	2,000	1,500	200	6.96	.167
LSMCOS-5	-03UN	20(class K)	5	.013	.375	.390	1,000	500	100	11.28	.091
LSMCOS-6	-04UN	20(class K)	6	.013	.460	.480	1,000	1,500	100	11.27	.102
LSMCOS-7	-05UO	18(class K)	7	.023	.575	.592	2,000	1,500	200	6.96	.237

TYPE LSMDU, LSMDY

MIL-C-24643/5& 6 19 Conductors, 600 Volts, Watertight Non-Flexing Service APPLICATIONS:

Type LSMDU and LSMDY cables are frequently used as degaussing type cables when magnetic fields are of concern.

SPECIFICATIONS:

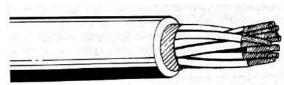
- 1.CONDUCTOR: Stranded bare copper, optional separator.
- 2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: Nineteen conductors cabled consecutively with fillers and binder tape.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LSMDY same construction as LSMDU except overall braided metal armor with overall crosslinked polyolefin. Change to /6 for LSMDY.

NEC Number Type and	Military Part Number	Conductor Size	Insulation Thickness	Overall Jacket Thickness	Nominal	Cond. Resist Per1000 Ft.	Insul. Resist Per 1000 Ft.	Approx Wt. Lbs
Size	M24643/5	AWG	IN	IN	IN	Max Ohms	Min Megohms	Ft.
LSMDU -6	-01UN	12(class B)	.030	.060	1.000	1.730	100	1.143
LSMDU -14	-02UN	9(class B)	.045	.060	1.395	0.868	100	1.783
LSMDU -23	-03UN	7(class B)	.060	.075	1.765	.598	100	2.566
LSMDU -40	-04UN	4(class C)	.060	.075	2.040	.273	90	4.191
LSMDU-60	-05UN	2(class D)	.060	.075	2.330	. 17 2	75	5.843

NEC Number Type and	Military Part Number	Conductor Size	Insulation Thickness	Overall Jacket Thickness	Nominal	Cond. Resist Per1000 Ft.	Insul. Resist Per 1000 Ft.	Approx. Wt. Lbs
Size	M24643/5	AWG	IN	IN	IN	Max Ohms	Min Megohms	Ft.
LSMDY -6	-01AN	12(class B)	.028	.060	1.190	1.715	100	1.360
LSMDY -14	-02AN	9(class B)	.040	.060	1.570	.859	100	2.041
LSMDY -23	-03AN	7(class B)	.052	.075	1.960	.542	100	2.978
LSMDY -40	-04AN	4(class C)	.052	.075	2.240	.270	90	4.480
LSMDY -60	-05AN	2(class D)	.052	.075	2.525	. 17 1	73	6.471

TYPE LSMHOF


MIL-C-24643/7

7 through 61 Conductors, 600 Volts,

Non- Watertight, Flexing Service, 16 AWG

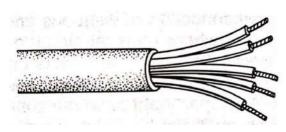
APPLICATIONS:

Type LSMHOF cables are multi conductor oil resistant constructions suitable for flexing service. They may be used in control applications for interconnection of weapons and electronic systems expect where unusual circuit parameters require a special type of cable. These cables are not watertight and shall be used only for runs within one compartment or within contiguous compartments. They shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: The require number of conductors cabled consecutively with fillers, binder tape.
- 5.OVERALL JACKET: Cross-linked polyolefin jacket, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

NEC Number	Military Part Number	Number	Nominal O.D.		Amps Per Conductor		Approximate Weight Lbs.
Type and Size	M24643/7	Of Conductors	Min. IN	Max. IN	40°C	50°C	Ft.
LSMHOF-7	-01UN	7	.465	.500	11/7*	9/6*	.164
LSMHOF-10	-02UN	10	.540	.585	11/7	9/6	.224
LSMHOF-14	-03UN	14	.585	.635	11/7	9/6	.290
LSMHOF-19	-04UN	19	.650	.705	11/7	9/6	.360
LSMHOF-24	-05UN	24	.735	.795	11/7	9/6	.457
LSMHOF-30	-06UN	30	.775	.835	11/7	9/6	.541
LSMHOF-37	-07UN	37	.855	.925	11/5	9/4	.674
LSMHOF-44	-08UN	44	.925	1.000	11/4	9/3	.771
LSMHOF-61	-09UN	61	1.100	1.175	11/3	9/2	1.125


• Ind/Avg. indicates the maximum current per conductor (ind), and the maximum current (avg.) per conductor when all conductors in the cable are used.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LSMMOP

MIL-C-24643/8 5 Conductors, 300 Volts, Non- Watertight Flexing Service, 24 AWG APPLICATIONS:

Type LSMMOP cable is a multi conductor construction suitable for flexing service. This cable may be used for the interconnection of electronic systems such as microphone circuits or for portable applications except where unusual circuit parameters require a special type of cable. This cable is not watertight and shall be used only for runs within one compartment or within contiguous compartments. It shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 3.
- 4.ASSEMBLY: Five conductors cabled consecutively around a central tie cord with fillers and binder polyester tape or braid.
- 5.OVERALL JACKET: Crosslinked polyolefin.

NEC Number	ber Part Number Number		Insulated Conductor	Nominal O.D.	Approximate Weight Lbs.		
Type and Size	M24643/8	Of Conductors	Min. IN	IN	Ft.		
LSMMOP-5	-01UN	5	.065	.305	.059		

TYPE LSMRI

MIL-C-24643/9

Twisted Pair and Twisted Triad, Non- Watertight,

Non-Flexing Service.

APPLICATIONS:

Type LSMRI cables are suitable for non-watertight, non-flexing service; these cables may be used for telecommunications applications, electronic and instrumentation. These cables are not watertight and shall be used only for runs within one compartment or within contiguous compartments. They shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

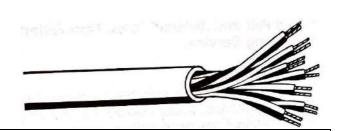
2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.

3.IDENTIFICATION: Standard identification code by Method 3.

4.ASSEMBLY: The two to three conductors cable (no overall jacket).

5.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

NEC Number	Military Part Number	Cond. Size	Number		ter Over ılated	Lay of Cond.	Cond. Resist. Per 1000 Ft.	Amp Cond	s Per . Max.	Approx. Wt. Lbs
Type & Size	M24643/9	AWG	Of Cond.	Min IN	Max IN	Max. IN	Max. OHMS	40°C	50°C	Ft.
LSMRI-D-1	-01UN	20 (class K)	2	.068	.075	2	11.05	3	3	.010
LSMRI-D-2-1/2	-02UN	16 (class K)	2	.092	.102	3	4.36	8	6	.022
LSMRI-T-2-1/2	-03UN	16 (class K)	3	.092	.102	3	4.36	7	6	.033


NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LSPBTMU, LSPBTM

MIL-C-24643/10 5, 15, and 30 Pairs, Watertight Non-Flexing Service, 22 AWG APPLICATIONS:

 $\label{type LSPBTMU} \textbf{LSPBTMU cables are suitable for watertight non-flexing service}.$

These cables are suitable for thermocouple instrumentation applications.

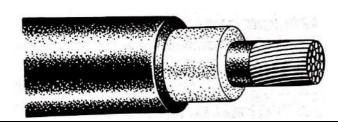
SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper and constantan.
- 2.INSULATION: Ethylene propylene rubber.
- 3.PAIRS: One copper and one constantan conductor twisted to form pair.
- 4.IDENTIFICATION: Telephone identification code applied by Method 3.
- 5.ASSEMBLY: The specified number of pairs cabled consecutively with fillers and binder tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LSPBTM, same construction except overall braided aluminium armor.

NEC	Military ¹ /	Number		Nominal O.D.						
Number	Part Number	Of	Type LS	SPBTMU	Type LS	SPBTM	Weight Lbs.			
Type & Size	M24643/10	Pairs	Min. IN Max.IN		Min. IN	Max.IN	Ft.			
LSPBTM/U-5	-01UN	5	.499	.540	.549	.590	.167			
LSPBTM/U-15	-02UN	10	.695	.750	.755	.800	.331			
LSPBTM/U-30	-03UN	30	.907	.980	.957	1.030	.544			

¹/ Change UN to AN for PBTM (armored)

TYPE LSSSF-300


MIL-C-24643/11

One Conductor,600 Volts, Non-Watertight,

Flexing Service.

APPLICATIONS:

Type LSSSF-300 cable is a single conductor special purpose cable. It is non-watertight and shall be used only for runs within one compartment or within contiguous compartments. They shall not be used to penetrate a watertight deck or bulkhead.

SPECIFICATIONS:

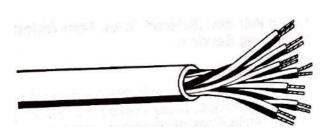
1.CONDUCTOR: Stranded bare hard-drawn copper with separator.

2.INSULATION: Ethylene propylene rubber.3.REINFORCEMENT: Optional reinforcement.

4. OVERALL JACKET: Crosslinked polyolefin, bonded to underlying insulation.

	, , , , , , , , , , , , , , , , , , ,	on a care an a con 1 1 1 1 6 1 1 1 2 an a con	• • • •		
NEC	Military	Conductors Size	Nomin	al O.D.	Approximate
Number	Part Number				Weight Lbs.
Type & Size	M24643/11	AWG	Min. IN	Max. IN	Ft.
LSSSF-300	-01UN	300 MCM (class G)	1.020	1.100	1.287

TYPE LSTTOP


MIL-C-24643/12

3 through 15 Pairs, 300 Volts, Non-Watertight,

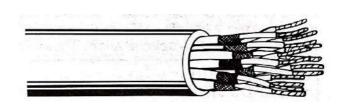
Flexing Service, 20 AWG

APPLICATIONS:

Type LSTTOP cables are unshielded multi pair constructions suitable for non-watertight flexing service. They may be used to interconnect audio, telephone, call bell, announcing and alarm systems. They may also be used for other interior communications and weapon control systems provided the ampere rating of the cable and voltage drop for the system are not exceeded.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Ethylene propylene rubber or crosslinked polyethylene.
- 3.IDENTIFICATION: Telephone identification code by Method 3.
- 4.PAIRS: Two conductors cabled to form pair.
- 5.ASSEMBLY: The required number of pairs cabled consecutively with fillers and binder tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.


NEC Number Type & Size	Military Part Number M24643/12	Number of Pairs	Overall Jacket Thickness IN	Nominal O.D.	Approximate Weight Lbs. Ft.
LSTTOP-3	-01UN	3	.060	.480	.113
LSTTOP-5	-02UN	5	.060	.590	.154
LSTTOP-10	-03UN	10	.060	.700	.259
LSTTOP-15	-04UN	15	.060	.830	.383

TYPE LSTTRS, LSTTRSA

MIL-C-24643/13

2 through 16 Shielded Pairs, 300 Volts, Non-Watertight, Flexing Service, 20 AWG APPLICATIONS:

These individually shielded multi pair cables may be supplied either armored or unarmoured. They are non-watertight flexing service constructions suitable for electronic radio frequency applications. They may be used for applications up to two megahertz. The maximum total copper operating temperature must not exceed 75°C.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Crosslinked polyethylene.

3.PAIRS: One black and one white or natural conductor cabled to form pair.

4.SHIELD: Braided uncoated or tin coated copper shield.

5.SHIELD INSULATION: Two polyester tapes.

6.IDENTIFICATION: Standard identification code by Method 2.

7.ASSEMBLY: The required number of shielded pairs cabled consecutively with fillers and binder tape.

8.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LSTTRSA, same construction with overall braided aluminium armor.

	Military ¹	Number		Nomin	Approximate Weight			
NEC Number	Part Number	of Shielded	Type LSTTRS Type LSTTRSA		STTRSA	LSTTRS	LSTTRSA	
Type and Size	M24643/13	Pairs	Min. IN Max. IN		Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LSTTRS/A-2	-01UN	2	.629	.680	.679	.730	.233	.297
STTRS/A-4	-02UN	4	.685	.740	.735	.790	.281	.394
STTRS/A-6	-03UN	6	.814	.880	.864	.930	.388	.470
STTRS/A-8	-04UN	8	.916	.990	.966	1.040	.474	.521
STTRS/A-10	-05UN	10	.999	1.080	1.049	1.130	.561	.557
STTRS/A-12	-06UN	12	1.0 17	1.100	1.067	1.150	.611	.608
ISTTRS/A-16	-07UN	16	1 100	1 190	1 150	1 240	723	764

¹/ Change UN to AN for LSTTRSA.

TYPE LSSSGU, LSSSGA

MIL-C-24643/14 Single Conductor, 1000 Volts, Watertight Non- Flexing Service APPLICATIONS:

Type LSSSGU/A cables are single conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection except where unusual circuit parameters require special type of cable. They are also used for degaussing applications.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Silicone rubber glass tape insulation, (optional binder).
- 3.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 4.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSSSGA, same construction with overall braided aluminium armor.

	Military ¹					Dia.	Overall				
	Part					Over	Jacket	Am	nps	Approx	kimate
NEC	Number	Condu	uctor Size	Nomin	al O.D.	Insul.	Thick.	Per Cor	nductor	Wei	ght
Number	M24643/	Navy		LSSSGU	LSSSGA					LSSSGU	LSSSGA
Type & Size	14	Stand.	AWG	Max. IN	Max. IN	IN	IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSSSGU/A-50	-01UN		3	.520	.570	.334	.040	149	137	.281	.316
			(class C)								
LSSSGU/A-75	-02UN		1	.602	.652	.407	.040	197	181	.414	.454
			(class C)								
LSSSGU/A-100	-03UN		0	.669	.719	.453	.050	232	214	.510	.550
			(class D)								
LSSSGU/A-200	-04UN		0000	.872	.922	.734	.050	361	332	.967	1.022
			(class D)								
LSSSGU/A-300	-05UN		300MCM	1.001	1.051	.748	.050	467	430	1.309	1.369
			(class D)								
LSSSGU/A-400	-06UN	400		1.118	1.168	.862	.050	575	530	1.763	1.833
		(127)									
LSSSGU/A-650	-07UN		650MCM	1.371	1.421	1.056	.060	785	722	2.716	2.801
_			(class D)								
LSSSGU/A-800	-08UN		800MCM	1.485	1.535	1. 17 0	.060	940	865	3.338	3.249
_			(class D)								
LSSSGU/A-1000	-09UN		1000	1.620	1.670	1.300	.060	1090	950	4.123	4.223
			MCM								
_			(class D)								
LSSSGU/A-1600	-10UN		1600	2.010	3.060	1.625	.075	1450	1270	6.368	6.489
			MCM								
_			(class B)								
LSSSGU/A-2000	-11UN		2000	2.210	2.260	1.810	.075	1630	1450	7.622	7.775
			MCM								
1, 2,			(class B)								

^{1/} Change UN to AN for LSSSGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LSDSGU, LSDSGA

MIL-C-24643/15

2 Conductors, 1000 Volts, Watertight,

Non- Flexing Service APPLICATIONS:

Types LSDSGU/A cables are two conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection except where unusual circuit parameters require a special type of cable. They are also used for degaussing applications.

SPECIFICATIONS:

Sizes 3-23 AWG:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Extruded silicone rubber.
- 3.COVERING: Glass braid.
- 4.IDENTIFICATION: Standard identification code by Method 1.
- 5.ASSEMBLY: Two conductors cabled with fillers and binder or combination binder/barrier.
- 6.OVERALL JACKET: Crosslinked polyolefin jacket, surface marking.
- 7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

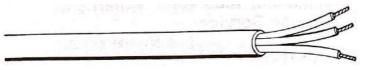
Size 50-400: same construction except silicone rubber-glass tape insulation, no glass braid or braid covering. Letter identification code by Method 5.

LSDSGA, same construction with overall braided aluminium armor.

	Military ¹					Dia.	Overall				
	Part					Over	Jacket	Am	nps		
NEC	Number	Cond	uctor Size	Nomin	al O.D.	Insul.	Thick.	Per Cor	nductor	Approxima	ate Weight
Number	M24643/	Navy		LSDSGU	LSDSGA					LSDSGU	LSDSGA
Type & Size	15	Stand.	AWG	Max. IN	Max. IN	IN	IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSDSGU/A-3	-01UN		16	.391	.441	.130	.030	13	12	.081	.109
			(class B)								
LSDSGU/A-4	-02UN		14	.427	.477	.143	.030	22	20	.100	.133
			(class B)								
LSDSGU/A-9	-03UN		10	.544	.594	.187	.040	44	41	.180	.230
			(class B)								
LSDSGU/A-14	-04UN		9	.670	.720	.262	.040	60	55	.245	.297
			(class B)								
LSDSGU/A-23	-05UN		7	.781	.831	.310	.050	78	72	.363	.410
			(class B)								
LSDSGU/A-50	-06UN		3	.911	.961	.334	.050	126	116	.681	.740
			(class C)								
LSDSGU/A-75	-07UN		1	1.074	1.124	.407	.050	168	155	1.018	1.086
-			(class C)								
LSDSGU/A-100	-08UN		0	1.167	1.217	.453	.050	199	183	1.217	1.289
-			(class D)								
LSDSGU/A-200	-09UN		0000	1.583	1.633	.634	.060	308	284	2.360	2.458
			(class D)								
LSDSGU/A-300	-10UN		300	1.841	1.891	.748	.075	413	380	3.213	3.326
			MCM								
			(class D)								
LSDSGU/A-400	-11UN	400	•	2.069	2.119	.862	.075	492	453	4.282	4.408
		(127)									

¹/ Change UN to AN for LSDSGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.



TYPE LSTSGU, LSTSGA

MIL-C-24643/16

3 Conductors, 1000 Volts, Watertight

Non- Flexing Service APPLICATIONS:

Types LSTSGU/A cables are three conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection except where unusual circuit parameters require a special type of cable. They are also used for degaussing applications.

SPECIFICATIONS:

Sizes 3-23 AWG:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Extruded silicone rubber.
- 3.COVERING: Glass braid.
- 4.IDENTIFICATION: Standard identification code by Method 1.
- 5.ASSEMBLY: Three conductors cabled with fillers and binder or combination binder/barrier.
- 6.OVERALL JACKET: Cross-linked polyolefin jacket, surface marking.
- 7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

Size 50-400: same construction except silicone rubber-glass tape insulation, no glass braid or braid covering. Letter identification code by Method 5.

LSDSGA, same construction with overall braided aluminium armor.

	Military ¹					Dia.	Overall				
	Part					Over	Jacket		nps		
NEC	Number	Cond	uctor Size	Nomin	al O.D.	Insul.	Thick.	Per Cor	nductor	Approxima	ate Weight
Number	M24643/	Navy		LSTSGU	LSTSGA					LSTSGU	LSTSGA
Type & Size	16	Stand.	AWG	Max. IN	Max. IN	IN	IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSTSGU/A-3	-01UN		16	.411	.461	.130	.030	11	10	.099	.128
			(class B)								
LSTSGU/A-4	-02UN		14	.449	.499	.143	.030	18	17	.125	.156
			(class B)								
LSTSGU/A-9	-03UN		10	.575	.625	.187	.040	39	36	.241	.278
			(class B)								
LSTSGU/A-14	-04UN		9	.718	.768	.262	.040	51	47	.313	.356
			(class B)								
LSTSGU/A-23	-05UN		7	.812	.862	.310	.050	69	64	.443	.492
			(class B)								
LSTSGU/A-50	-06UN		3	.969	1.019	.334	.050	110	101	.886	.947
			(class C)								
LSTSGU/A-75	-07UN		1	1.134	1.185	.407	.050	148	136	1.313	1.385
			(class C)								
LSTSGU/A-100	-08UN		0	1.266	1.316	.453	.060	174	160	1.618	1.696
			(class D)								
LSTSGU/A-150	-09UN		000	1.515	1.565	.557	.060	235	216	2.465	2.558
			(class D)								
LSTSGU/A-200	-10UN		0000	1.669	1.719	.634	.060	271	250	3.086	3.197
			(class D)								
LSTSGU/A-300	-11UN		300MCM	1.957	2.007	.748	.075	348	320	4.237	4.356
			(class D)								
LSTSGU/A-400	-12UN	400(127)		2.203	2.253	.862	.075	435	400	5.695	5.829

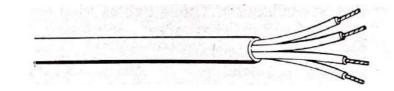
1/ Change UN to AN for LSTSGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LSFSGU, LSFSGA

MIL-C-24643/17

4 Conductors, 1000 Volts, Watertight,


Non- Flexing Service

APPLICATIONS:

Types LSFSGU/A cables are four conductor either armored or

unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection except where unusual circuit

parameters require a special type of cable. They are also used for degaussing applications.

SPECIFICATIONS:

Sizes 3-23 AWG:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Extruded silicone rubber.

3.COVERING: Glass braid.

4.IDENTIFICATION: Standard identification code by Method 1.

5.ASSEMBLY: Four conductors cabled with fillers and binder or combination binder/barrier.

6.OVERALL JACKET: Cross-linked polyolefin jacket, surface marking.

7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

Size 50-400: same construction except silicone rubber-glass tape insulation, no glass braid or braid covering. Letter

identification code by method 5.

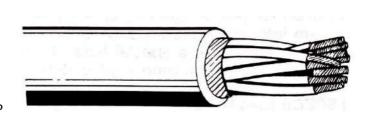
LSDSGA, same construction with overall braided aluminium armor.

NEC	Military ¹	Conduc	tor Size	Nomin	al O.D.	Dia.	Overall	An	nps	Appro	ximate
Number	Part					Over	Jacket	Per		We	ight
Type & Size	Number					Insul.	Thick.	Cond	uctor		
	M24643/	Navy	•		LSFSGA	IN	IN	40°C	50°C	LSFSGU	LSFSGA
	17	Stand.		Max. IN	Max. IN					Lbs./ Ft.	Lbs./ Ft.
LSFSGU/A-3	-01UN	1	6(class B)	.447	.497	.130	.030	11	10	.126	.154
LSFSGU/A-4	-02UN	1	4(class B)	.513	.563	.143	.040	18	17	.172	.204
LSFSGU/A-9	-03UN	1	O(class B)	.630	.680	.187	.040	39	36	.296	.336
LSFSGU/A-23	-04UN		7(class B)	.890	.940	.310	.050	69	64	.460	.517
LSFSGU/A-50	-05UN		3(class C)	1.050	1.100	.334	.050	110	101	1.015	1.076
LSFSGU/A-75	-06UN		1(class C)	1.240	1.290	.407	.050	148	136	1.486	1.289
LSFSGU/A-100	-07UN	0(class D)		1.358	1.408	.453	.050	174	160	1.820	1.412
LSFSGU/A-150	-08UN	000(class D)		1.625	1.675	.557	.060	235	216	3.105	3.188
LSFSGU/A-200	-09UN	0000	O(class D)	1.820	1.870	.634	.060	271	250	3.819	3.922

1/ Change UN to AN for LSFSGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LSMSCU, LSMSCA, LSMSCS


MIL-C-24643/18

7 through 91 Conductors, 1000 Volts, Watertight,

Non- Flexing Service, 18 AWG

APPLICATIONS:

Types LSMSCU/A/S cables are multi conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system inteconnection except where unusual circuit parameters require a special type of cable. They are also used for degaussing applications. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

Sizes 3-23 AWG:

1.CONDUCTOR: Stranded bare copper.2.INSULATION: Extruded silicone rubber.

3.COVERING: Glass braid.

4.IDENTIFICATION: Standard identification code by Method 1.

5.ASSEMBLY: The require number of conductors cabled with fillers and binder or combination binder/barrier.

6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSMSCA, same construction with overall braided aluminium armor.

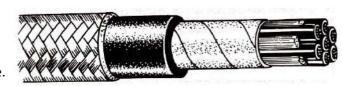
LSMSCS, same as LSMSCU, except double overall shield.

Military		Over							Amp		_		
/ Down	N.a	-			Nomina	I O.D. IN			Cond	uctor	Аррі	roximate we	eignt
	_												
	•	•	LCNA	CCLL	1.004	CCA	LCN	CCC	40°	ro°	LCNACCLI	LCDACCA	LCNACCC
		_											LSMSCS
	_				l		l					-	Lbs./ Ft.
-01UN	/	.040	.447	.484	.497	.534	.507	.544	-	•	.148	.176	.244
									•				
-02UN	10	.050	.575	.622	.625	.672	.635	.682	-	9/6	.227	.267	.349
									-				
-03UN	14	.050	.617	.668	.667	.718	.677	.728	-	9/6	.280	.324	.403
									-				
-04UN	19	.050	.682	.738	.732	.788	.742	.798		9/6	.354	.401	.509
									-				
-05UN	24	.050	.790	.855	.840	.905	.850	.915	12/	9/5	.467	.522	.630
									6				
-06UN	30	.050	.833	.901	.883	.951	.893	.961	12/	9/5	.539	.596	.727
									6				
-07UN	37	.060	.926	1.002	.976	1.055	.986	1.065	12/	9/5	.648	.707	.810
									6				
-08UN	44	.060	1.030	1.114	1.080	1.164	1.090	1.174	12/	9/4	.793	.861	.991
									5				
-09UN	61	.060	1.156	1.250	1.206	1.300	1.216	1.310	12/	9/3	.983	1.058	1.227
									4				
-10UN	91	.060	1.369	1.480	1.419	1.530	1.429	1.540	12/	9/3	1.510	1.600	1.887
									4				
	/ Part Number M24643/ 18 -01UN -02UN -03UN -04UN -05UN -06UN -07UN -08UN -09UN -10UN	/ Part No. Number M24643/ Con 18 No. Of Con d. -01UN 7 -02UN 10 -03UN 14 -04UN 19 -05UN 24 -06UN 30 -07UN 37 -08UN 44 -09UN 61 -10UN 91	/ Part No. No. Number M24643/ 18 No. Thick. IN Thick. -01UN 7 .040 -02UN 10 .050 -03UN 14 .050 -05UN 24 .050 -05UN 24 .050 -07UN 37 .060 -08UN 44 .060 -09UN 61 .060	/ Part No. Number M24643/ 18 No. Of Thick ISM Min -01UN 7 .040 .447 -02UN 10 .050 .575 -03UN 14 .050 .617 -04UN 19 .050 .682 -05UN 24 .050 .790 -06UN 30 .050 .833 -07UN 37 .060 .926 -08UN 44 .060 1.030 -09UN 61 .060 1.156 -10UN 91 .060 1.369	/ Part Number Number M24643/ 18 No. d. IN Min Max -01UN 7 .040 .447 .484 -02UN 10 .050 .575 .622 -03UN 14 .050 .617 .668 -04UN 19 .050 .682 .738 -05UN 24 .050 .790 .855 -06UN 30 .050 .833 .901 -07UN 37 .060 .926 1.002 -08UN 44 .060 1.030 1.114 -09UN 61 .060 1.156 1.250 -10UN 91 .060 1.369 1.480	/ Part Number Number M24643/ 18 No. In thick. Is	Part Number Number Number Number M24643/ 18 No. 10 In thick. 10 LSMSCU LSMSCA LSMSCA LSMSCA LSMSCA LSMSCA LSMSCA LSMSCA Max Min Min Min Max Min Min Min Min Min Min Min Min Min	/ Part Number Number Number Number M24643/ No. In Thick. In In Thick. In Th	Part Number N	Part No. No. Number	Part Number Number Number Number Number M24643/ 18 Con It	/ Part Number Number Nd24643/ 18 No. 1 Jacke t t t t	Mart No. Part No. Part No. No.

1/ Change UN to AN for LSMSCA.

Change UN to UD for LSMSCS.

*Ind/Avg indicates the maximum current per conductor (ind), and the maximum current (avg.) per conductor when all conductors in the cable are used.


NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

Diameters and weights may vary between manufacturers.

TYPE LS6SGU, LS6SGA

MIL-C-24643/19 6 Conductors, 1000 Volts, Watertight Non- Flexing Service APPLICATIONS:

Types LS6SGU/A cables are six conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system inter-connection except where unusual circuit parameters require a special type of cable. They are also used for degaussing applications.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Silicone rubber – glass tape.

3.IDENTIFICATION: Letter identification by Method 5.

4.ASSEMBLY: Six conductors (two each of letter A, B, C) cabled in sequence ABC ABC, fillers, binder or combination

binder/barrier.

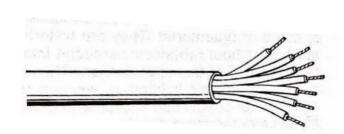
5.OVERALL JACKET: Cross-linked polyolefin, surface marking.

6.AMPACITY: Figured at DC or 60 Hz, each conductor.

LS6SGA, same construction with overall braided aluminium armor.

		Conductor			Dia. Over	Overall Jacket	An	nps		
NEC	Military ¹	Size	Nomin	al O.D.	Insul.	Thick.	Per Co	nductor	Approxima	ate Weight
Number	Part Number	Navy Stand.	LS6SGU	LS6SGA					LS6SGU	LS6SGA
Type & Size	M24643/19	AWG	Max. IN	Max. IN	IN	IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LS6SGU/A-100	-01UN	O(class D)	1.600	1.650	.453	.060	136	127	2.820	2.919
LS6SGU/A-125	-02UN	00(class D)	1.790	1.840	.507	.060	160	147	3.490	3.600
LS6SGU/A-150	-03UN	000(class D)	1,960	2.010	.557	.060	188	17 3	4.339	4.468
LS6SGU/A-200	-04UN	0000(class D)	2.200	2.250	.634	.075	219	202	5.479	5.613

1/ Change UN to AN for LS6SGA.


TYPE LS7SGU, LS7SGA

MIL-C-24643/20

7 Conductors, 1000 Volts, Watertight

Non- Flexing Service APPLICATIONS:

Types LS7SGU/A cables are seven conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection except where unusual circuit parameters require a special type of cable.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.2.INSULATION: Extruded silicone rubber.
- 3.COVERING: Glass braid.
- 4.IDENTIFICATION: Standard identification code by Method 1.
- 5.ASSEMBLY: Seven connectors cabled consecutively with fillers and binder or combination binder/barrier.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LS7SGA, same construction with overall braided aluminium armor.

						Dia.					
					Dia.	Over	Overall				
	Military ¹ /	Cond.			Over	Braid	Jacket	An	nps	Appro	ximate
NEC	Part	Size	Nomin	al O.D.	Insul.	Cover	Thick.	Per Cor	nductor	We	eight
Number	Number		LS7SGU	LS7SGA		Max.				LS7SGU	LS7SGA
Type & Size	M24643/20	AWG	Max. IN	Max. IN	IN	IN	IN	40°C	50°C	Lbs./Ft.	Lbs./ Ft.
LS7SGU/A-3	-01UN	16(class B)	.545	.595	.096	.130	.040	15/11*	14/10*	.152	.177
LS7SGU/A-4	-02UN	14(class B)	.595	.645	.112	.143	.040	26/14	24/13	.198	.231

^{1/} Change UN to AN for LS7SGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.

^{*}Ind/Avg indicates the maximum current per conductor (ind), and the maximum current (avg) per conductor when all conductors in the cable are used.

TYPE LSTCJU, LSTCTU, LSTCJA, LSTCTA

MIL-C-24643/21 One Pair, Watertight Non- Flexing Service APPLICATIONS:

Type LSTCJU/A and LSTCTU/A cables can be either armored or unarmoured, the cables may be used for type T and type J thermocouple and pyrometer applications. These

type J thermocouple and pyrometer applications. These cables are watertight and meet the 1-hour fire electrical circuit integrity requirements of the specification.

SPECIFICATIONS:

Type LSTCJU:

1.CONDUCTOR: Two bare uncoated stranded, one iron and one constantan.

2.INSULATION: Extruded silicone rubber

3.COVERING: Glass braid.

4.IDENTIFICATION: Printed "8 (Grey)" on the iron and "3 (Red)" on the constantan.

5.ASSEMBLY: Cabled with fillers and binder or combination binder/barrier.

6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

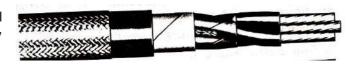
LSTCJA, same construction with overall braided aluminium armor.

LSTCTU: same except one copper and one constantan conductor, the copper conductor printed "6 (Blue)" and "3 (Red)" printed on the constantan conductor.

LSTCTA, same construction with overall braided aluminium armor.

NEC Number	Military/ Part Number	Conductor Size	Diameter Over Insulation	Diameter Over Braid Covering	Nominal O.D.	Approximate
Type & Size	M24643/21	AWG	Min. IN	Max. IN	IN	Weight Lbs. Ft.
LSTCJU-4	-01UN	14(Class B)	.105	.140	.430	.117
LSTCTU-4	-02UN	14(Class B)	.105	.140	.430	.117
LSTCJA-4	-03AN	14(Class B)	.105	.140	.480	.136
LSTCTA-4	-04AN	14(Class B)	.105	.140	.480	.136

TYPE LS5KVTSGU, LS5KVTSGA


MIL-C-24643/22

3 Conductors, 5000 Volts, Watertight

Non- Flexing Service

APPLICATIONS:

Type LS5KVTSGU/A cables are three conductor either armored or unarmoured. They are watertight and meet the 1 hour fire electrical circuit integrity requirements of this specification. These cables may be used for power, lighting, or weapon control system interconnection.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Silicone rubber glass tape, (optional binder).
- 3.IDENTIFICATION: Letter identification code by Method 5.
- 4.ASSEMBLY: Three conductors cabled with fillers in sequence ABC with binder or combination binder/barrier.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LS5KVTSGA, same construction with overall braid, aluminium armor.

	Military							Dia.	An	ıps		
	/	Condu	ıctor Size		Nomin	al O.D.		Over	Per Cor	nductor	Approxima	ate Weight
	Part							Insul.				
NEC	Number			LS5K\	/TSGU	LS5KV	/TSGA				LS5KVTSGU	LS5KVTSGA
Number	M24643/	Navy										
Type & Size	22	Stand	AWG	Min.	Max.	Min.	Max.	IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LS5KVTSGU/	-01UN	-	0	-	1.75	-	1.79	.675	174	160	2.310	2.417
A-100			(class B)									
LS5KVTSGU/	-02UN	-	000	-	1.95	-	2.00	.769	235	216	2.964	3.073
A-150			(class D)									
LS5KVTSGU/ A-250 LS5KVTSGU/ A-350	-03UN -04UN	-	250,000 (class C) 350,000 (class D)	-	2.22	-	2.27	.889 .994	315 391	290 360	4.294 5.417	4.429 5.562
LS5KVTSGU/ A-400	-05UN	400 (127)			2.60	-	2.65	1.054	435	400	6.190	6.551

1/ Change UN to AN for LS5KVTSGA.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable,

TYPE LSTTSU, LSTTSA

MIL-C-24643/23

1^{1/2} through 60 Pairs, 300 Volts, Watertight

Non- Flexing Service, 22AWG.

APPLICATIONS:

Types LSTTSU/A cables are multi paired armored or unarmoured. They ate watertight and meet the 1-hour fire electrical circuit integrity requirements of this specification. These cables may be used to inter-connect audio, telephone, call bell, announcing, and alarm systems. They may also be used for other interior communication and weapon control systems provided the ampere rating of the cable and voltage drop for the system are not exceeded.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Extruded silicone rubber.

3.INSULATION JACKET: Polyamide.

4.IDENTIFICATION: Identification code by Method 6.

5.ASSEMBLY: Two conductors cabled to form pair. The required number of pair cabled with fillers and binder or

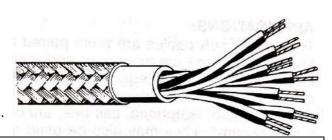
combination binder/barrier.

6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LSTTSA, same construction with overall braid, aluminium armor.

NEC	Military ¹ / Part	Number	Nomi	nal O.D.	Overall Jacket	Approxin	nate Weight
Number	Number	of	LSTTSU	LSTTSA	Thickness	LS6SGU	LS6SGA
Type & Size	M24643/23	Pairs	Max. IN	Max. IN	IN	Lbs./ Ft.	Lbs./ Ft.
LSTTSU/A-1 ^{1/2 2/}	-01UN	1-1/2	.330	.380	.050	.066	.083
LSTTSU/A-3	-02UN	3	.450	.500	.050	.113	.137
LSTTSU/A-5	-03UN	5	.540	.590	.050	.167	.195
LSTTSU/A-10	-04UN	10	.675	.725	.062	.262	.296
LSTTSU/A-15	-05UN	15	.800	.850	.062	.379	.416
LSTTSU/A-20	-06UN	20	.870	.920	.062	.461	.504
LSTTSU/A-30	-07UN	30	1.080	1.130	.075	.697	.742
LSTTSU/A-40	-08UN	40	1.200	1.250	.075	.874	.930
LSTTSU/A-50	-09UN	50	1.400	1.450	.075	1.148	1.193
LSTTSU/A-60	-10UN	60	1.450	1.500	.075	1.267	1.317

^{1/} Change UN to AN for LSTTSA.


2/ LSTTSU-11/2 comprised of three conductors cabled together to form a triad.

TYPE LSTCJX, LSTCKX, LSTCTX

MIL-C-24643/24 1 through 12 Pair, Watertight Non- Flexing Service APPLICATIONS:

Types LSTCJX, LSTCKX, LSTCTX are multi pair armored thermocouple cables. They are watertight and meet the 1-hour fire electrical circuit integrity requirements of this specification. These cables may be used for type J, type K, and type T thermocouple and pyrometer applications.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare.

2.INSULATION: Extruded silicone rubber with glass braid.

3.IDENTIFICATION: Special color identification code.

4.ASSEMBLY: Two conductors cabled to form pair.

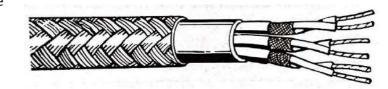
One each of iron and constantan in LSTCJX.

One each of chromel and alumel in LSTCKX.

One each of copper and constantan in LSTCTX.

The specified number of pairs cabled with saturated non-charring silicone base and fillers with binder tape.

5.OVERALL JACKET: Silicone rubber.


6.ARMOR: Braided aluminium.

NEC Number Type and Size	Military ¹ / Part Number M24643/24	Conductor Size AWG	Number Of Pairs	Number of Strands and Strand Diameter	Diameter Over Insul. Min. IN	Diameter Over Braid Max IN	Overall Jacket Thickness IN	Nominal O.D. IN	Approx. Weight Lbs. Ft.
LSTCJX-3	-01AN	16	3	7/0.0201	.100	.125	.040	.742	.231
LSTCJX-7	-02AN	16	7	7/0.0201	.100	.125	.050	.983	.515
LSTCJX-12	-03AN	16	12	7/0.0201	.100	.125	.050	1.269	.844
LSTCKX-1	-04AN	16	1	7/0.0201	.100	.125	.030	.456	.108
LSTCKX-3	-05AN	16	3	7/0.0201	.100	.125	.040	.742	.257
LSTCKX-7	-06AN	16	7	7/0.0201	.100	.125	.050	.983	.520
LSTCKX-12	-07AN	16	12	7/0.0201	.100	.125	.050	1.269	.844
LSTCTX-1	-08AN	21	1	7/0.0113	.065	.085	.030	.350	.108
LSTCTX-3	-09AN	21	3	7/0.0113	.065	.085	.030	.552	.262
LSTCTX-7	-10AN	21	7	7/0.0113	.065	.085	.040	.731	.515
LSTCTX-12	-11AN	21	12	7/0.0113	.065	.085	.050	.964	.844

TYPE LSPI

MIL-C-24643/25 3, 7 and 12 Shielded Pair, Non-Watertight Non- Flexing Service,18 AWG

Types LSPI cables are multi pair shielded and armored. They are non-watertight and meet the 1-hour fire electrical circuit integrity requirements of this specification. The silicone insulation and jacket provide high temperature, non-flexing service for electronic and instrumentation system interconnectors such as position indication applications.

SPECIFICATIONS:

APPLICATIONS:

- 1.CONDUCTOR: Stranded nickel coated copper.
- 2.INSULATION: Extruded silicone rubber with black or white glass braid covering.
- 3.PAIRS: One black and one white conductor cabled to form pair. Braided uncoated copper shield with shield insulation of polyethylene terephthalate film and glass braid.
- 4.IDENTIFICATION: Standard identification code by Method 4.
- 5.ASSEMBLY: The specified number of pairs cabled with fillers saturated with non-charring silicone-base compound and binder tape.
- 6.OVERALL JACKET: Silicone rubber.
- 7.ARMOR: Braided aluminium.

NEC Number Type & Size	Military Part Number M24643/25	Number Of Pairs	Overall Jacket Thickness IN	Nominal O.D. IN	Approx. Weight Lbs. Ft.
LSPI-3	-01AN	3	.040	.685	.285
LSPI-7	-02AN	7	.050	.900	.505
LSPI-12	-03AN	12	.050	1.155	1.372

TYPE LSDPS, LSTPS, LSFPS, LS7PS

MIL-C-24643/26

2 through 7 Conductors, 600 Volts, Watertight

Non- Flexing Service APPLICATIONS:

Types LSDPS, LSTPS, LSFPS, LS7PS cables are multi conductor armored. They are watertight and non-flexing constructions that meet the 1-hour fire electrical circuit integrity requirements of this specification. They may be used for high temperature interconnect of lighting and power systems.

SPECIFICATIONS:

1.CONDUCTOR: Stranded nickel coated copper.

2.INSULATION: Extruded silicone rubber with glass braid.

3.IDENTIFICATION: Standard identification code by Method 4.

4.ASSEMBLY: The specified number of conductors cabled with fillers, silicone base compound and binder tape.

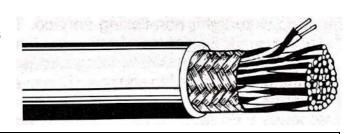
5.OVERALL JACKET: Silicone rubber. 6.ARMOR: Braided aluminium.

7.AMPACITY: Calculated at 60Hz AC(rms) or DC for 75 °C conductor temperature.

	B.G.Li.			Dia.	Dia.	Overa II		Cold Bend	Cond. Resist. Per 1000 Ft.		
NEC	Military Part	Cond.		Over	Over	Jacket	Nom.	Mandrel	At 25°		
Number	Number	Size	No.	Insul.	Braid	Thick	O.D.	Dia.	С	Amps	
Type &	M24643/		Of					Max	Max	Per	Approx.
Size	26	AWG	Cond.	Min. IN	Max. IN	IN	IN	Ohms	40°C	Cond.	Wt. Lbs. Ft.
LSDPS-3	-01AN	16(class B)	2	.100	.125	.030	.455	6.0	5.39	10	.121
LSDPS-4	-02AN	14(class B)	2	.116	.141	.030	.439	6.0	3.38	20	.141
LSDPS-6	-03AN	12(class B)	2	.143	. 17 0	.040	.585	7.5	2.13	28	.194
LSDPS-9	-04AN	10(class B)	2	.166	.193	.040	.628	7.5	1.34	41	.232
LSDPS-14	-05AN	9(class B)	2	.200	.230	.050	.730	8.0	1.06	54	.323
LSTPS-3	-06AN	16(class B)	3	.100	.125	.030	.475	6.5	5.39	10	.129
LSTPS-4	-07AN	14(class B)	3	.116	.141	.040	.553	7.0	3.38	17	.160
LSTPS-6	-08AN	12(class B)	3	.143	.170	.040	.620	7.5	2.13	23	.229
LSTPS-9	-09AN	10(class B)	3	.166	.193	.040	.657	7.5	1.34	36	.299
LSTPS-14	-10AN	9(class B)	3	.200	.230	.050	.751	9.5	1.06	47	.411
LSTPS-23	-11AN	7(class B)	3	.257	.291	.050	.866	10.5	0.643	64	.579
LSTPS-30	-12AN	5(class C)	3	.310	.348	.060	.989	12.0	0.403	77	.738
LSFPS-14	-13AN	9(class B)	4	.200	.230	.050	.815	10.0	1.06	42	.452
LS7PS-6	-14AN	12(class B)	7	.143	. 17 0	.050	.775	9.5	2.13	35	.361
LS7PS-14	-15AN	9(class B)	7	.200	.230	.050	.986	11.0	1.06		

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986.

TYPE LS2AU, LS2A, LS2AUS


MIL-C-24643/27

40 Pairs with Overall Shield, 600 Volts

Non- Watertight, Non-Flexing Service, 22AWG

APPLICATIONS:

Types LS2A/U/S type cables are overall shielded multi pair constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems. Interior communications, lighting, and power, where shielding of 400 Hz is required. The overall shielding conforms to surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.IDENTIFICATION: Telephone identification by Method 3.

4.ASSEMBLY: Two conductors cabled to form pair. Forty pairs cabled consecutively with binder.

5.SHIELD: Braided tin-coated copper with binder tape.

6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS2A, same construction with overall braided aluminium armor.

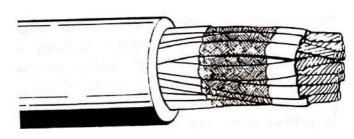
LS2AUS, same construction as LS2AU, with double overall shield.

	Military ¹ /			Nominal O.D.						Approximate Weight		
	Part		LS2AU		LS2A		LS2AUS		LS2AU	LS2A	LS2AUS	
NEC	Number	Number										
Number	M24643/	Of										
Type & Size	27	Pairs	Min. IN	Max. IN	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft	Lbs./ Ft	Lbs./ Ft	
LS2A/U/S-40	-01UO	40	1.320	1.370	1.370	1.420	1.380	1.430	.721	.741	.901	

^{1/} Change UO to AO for LS2A (armored).

1/ Change UO to UD for LS2AUS (double overall shield).

TYPE LS1S50MU, LS1S50MA, LS1S50MUS


MIL-C-24643/28

16 through 70 Shielded Singles, Non-Watertight

Non- Flexing Service, 22AWG,50 Ohms

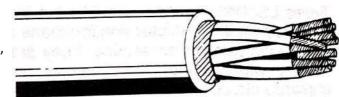
APPLICATIONS:

Types LS1S50MU/A/S type cables are individually shielded, 50 Ohm multi conductor constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting and power where shielding of 400 Hz required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification by Method 1.
- 4.SHIELD: Braided tin-coated copper.
- 5.SHIELD INSULATION: Two sealed polyester tapes.
- 6.ASSEMBLY: The required number of shielded conductors cabled consecutively with binder tape.
- 7.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- ${\tt LS1S50MA, same\ construction\ with\ overall\ braided\ aluminium\ armor.}$

LS1S50MUS, same construction as LS1S50MU, with double overall shield.


	Military ¹ /				Nomin	al O.D.		Approximate Weight			
NEC	Part		LS1S5	50MU	LS1S!	50MA	LS1S50MUS		LS1S50MU	LS1S50MA	LS1S50MUS
Number	Number	No.									
Type &	M24643/	Of									
Size	28	Cond.	Min IN	Max IN	Min IN	Max IN	Min IN	Max IN	Lbs./ Ft	Lbs. /Ft	LbsFt
LS1S50MU/	-01UN	16	.760	.825	.810	.875	.820	.885	.329	.360	.444
A/S-16											
LS1S50MU/	-02UN	20	.835	.905	.885	.955	.895	.965	.381	.417	.514
A/S-20											
LS1S50MU/	-03UN	40	1.095	1.185	1.145	1.235	1.155	1.245	.710	.756	.887
A/S-40											
LS1S50MU/	-04UN	70	1.465	1.555	1.515	1.605	1.525	1.615	1.751	1.798	2.188
A/S-70											

- 1/ Change UN to AN for LS1S50MA (armored).
- 1/ Change UN to UD for LS1S50MUS (double overall shield).

TYPE LSMU, LSMA, LSMUS

MIL-C-24643/29 14 Conductors, 300 Volts, Non-Watertight Non- Flexing Service, 20AWG APPLICATIONS:

Types LSMU/A/S type cables are multi conductor, suitable for non-watertight, non-flexing service. They may be used for power, lighting, interior communication, weapons control and electronic systems except where circuit parameters require special types of cable.

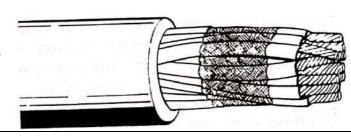
SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Ethylene propylene rubber or cross-linked polyethylene.
- 3.IDENTIFICATION: Standard identification by Method 1.
- 4.ASSEMBLY: Fourteen conductors cabled consecutively, binder tape.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LSMA, same construction with overall braided aluminium armor.
- LSMUS, same construction as LSMU, with double overall shield.

	Military ¹ /				Nomin	al O.D.	Approximate Weight				
NEC	Part		LSMU		LS	LSMA		LSMUS		LS1S50MA	LS1S50MUS
Number	Number	No.									
Type &	M24643/	Of			Min						
Size	29	Cond.	Min IN	Max IN	IN	Max IN	Min IN	Max IN	Lbs. /Ft	Lbs./ Ft	Lbs. /Ft
LSMU/A/S-	-01UN	14	.365	.400	.415	.450	.425	.460	.132	.160	.217
14											

- 1/ Change UN to AN for LSMA (armored).
- 1/ Change UN to UD for LSMUS (double overall shield).

TYPE LS1SWU, LS1WA


MIL-C-24643/30

2 through 30 Shielded Singles, Watertight

Non- Flexing Service, 22AWG

APPLICATIONS:

Types LS1WU/A cables are 61 ohm individually shielded multi conductor constructions suitable for watertight, non-flexing service. They are available with or without armor. They may be used to provide shielded circuits for combat systems, interior communications, lighting and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Crosslinked polyethylene.

3.SHIELD: Bare cooper braided shield, shield insulation.

4.IDENTIFICATION: Standard identification code by Method 2.

5.ASSEMBLY: The required number of shielded singles cabled consecutively with fillers, binder tape.

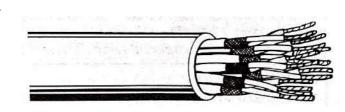
6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS1SWA, same construction with overall braided aluminium armor.

NEC	Military1/ Part	Number	Overall Jacket		Nomin	al O.D.		Approximate Weight		
Number	Number	of	Thickness	LS1	SWU	LS1S	WA	LS1SWU	LS1SWA	
Type & Size	M24643/30	Cond.	IN	Mix. IN	Max. IN	Mix. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.	
LS1SWU/A-2	-01UN	2	.030	.430	.455	.480	.505	.103	.120	
LS1SWU/A-14	-02UN	14	.040	.825	.870	.875	.920	.463	.506	
LS1SWU/A-20	-03UN	20	.040	.970	1.030	1.020	1.080	.618	.658	
LS1SWU/A-30	-04UN	30	.050	1.135	1.200	1.185	1.250	.885	.942	

1/ Change UN to AN for LS1SWA (armored).

TYPE LS2SU, LS2SA, LS2SUS


MIL-C-24643/31

3 through 61 Shielded Pairs, Non-Watertight

Non- Flexing Service, 22 AWG

APPLICATIONS:

Types LS2SU/A/S cables are 75 ohm individually shielded multi conductor constructions suitable for non-watertight, non-flexing service. They are available both with or without armor and a double overall shield. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Crosslinked polyethylene.

3.PAIR: One black and one white conductor twisted to form pair, optional binder.

4.SHIELD: Braided tin-coated copper.

5.SHIELD INSULATION: Two sealed polyester tapes.

6.IDENTIFICATION: Standard identification code by Method 2.

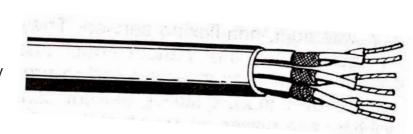
7.ASSEMBLY: The required number of shielded pairs cabled consecutively, fillers, binder tape.

8.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS2SA, same construction with overall braided aluminium armor.

LS2SUS, same construction as LS2SU, with double overall shield.

			Overall	Nominal O.D. IN						App	roximate V	Veight
NEC Number	Military ¹ / Part Number	No. Of	Jacket Thick.	LS2	2SU	LSZ	2SA	LS2	sus	LS2SU	LS2SA	LS2SUS
Type & Size	M24643/31	Pairs	IN	Min	Max	Min	Max	Min	Max	Lbs. /Ft	Lbs. /Ft	Lbs. /Ft
LS2SU/A/S-3	-01UN	3	.040	.480	.520	.530	.570	.540	.580	.170	.206	.261
LS2SU/A/S-7	-02UN	7	.040	.610	.660	.660	.710	.670	.720	.255	.298	.367
LS2SU/A/S-10	-03UN	10	.040	.770	.830	.820	.880	.830	.890	.368	.422	.496
LS2SU/A/S-14	-04UN	14	.050	.860	.930	.910	.980	.920	.990	.558	.618	.753
LS2SU/A/S-19	-05UN	19	.050	.970	1.040	1.020	1.090	1.030	1.100	.732	.793	.915
LS2SU/A/S-24	-06UN	24	.050	1.120	1.120	1.170	1.260	1.180	1.270	.953	1.030	1.191
LS2SU/A/S-30	-07UN	30	.050	1.190	1.280	1.240	1.330	1.250	1.340	1.176	1.256	1.470
LS2SU/A/S-37	-08UN	37	.050	1.290	1.380	1.340	1.430	1.350	1.440	1.459	1.545	1.823
LS2SU/A/S-44	-09UN	44	.050	1.460	1.550	1.510	1.600	1.520	1.610	1.809	1.905	2.080
LS2SU/A/S-61	-10UN	61	.060	1.660	1.740	1.710	1.790	1.720	1.800	2.209	2.317	2.540


1/ Change UN to AN for LS2SA (armored).

1/ Change UN to UD for LS2SUS (double overall shield).

TYPE LS2SWAU, LS2SWA

MIL-C-24643/32 3 through 61 Shielded Pairs, Watertight Non- Flexing Service, 22 AWG

Types LS2SWAU/A cables are 75 ohm individual shielded multi pair constructions suitable for watertight, non-flexing service. They are available with or without armor. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

APPLICATIONS:

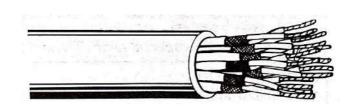
- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.PAIR: One black and one white conductor for each pair, optional binder tape.
- 4.SHIELD: Tin-coated copper braid over each pair. Shield insulation of two sealed polyester tapes.
- 5.IDENTIFICATION: Standard identification code by Method 2.
- 6.ASSEMBLY: The required number of shielded cabled consecutively, fillers, binder.
- 7.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS2SWA, same construction with overall braided aluminium armor.

	Part		Overall Jacket			Approximate Weight			
NEC	Number	Number	Thickness	LS2S	WAU	LS2S	SWA	LS2SWAU	LS2SWA
Number	M24643/3	of							
Type & Size	2	Pairs	IN	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS2SWAU/A-3	-01UN	3	.040	.480	.520	.530	.570	.175	.206
LS2SWAU/A-7	-02UN	7	.040	.610	.660	.660	.710	.257	.298
LS2SWAU/A-10	-03UN	10	.040	.770	.830	.820	.880	.370	.422
LS2SWAU/A-14	-04UN	14	.050	.860	.930	.910	.980	.556	.618
LS2SWAU/A-19	-05UN	19	.050	.970	1.040	1.020	1.090	.731	.793
LS2SWAU/A-24	-06UN	24	.050	1.120	1.120	1.170	1.260	.957	1.256
LS2SWAU/A-30	-07UN	30	.050	1.190	1.280	1.240	1.330	1.174	1.545
LS2SWAU/A-37	-08UN	37	.050	1.290	1.380	1.340	1.430	1.462	1.545
LS2SWAU/A-44	-09UN	44	.050	1.460	1.550	1.510	1.600	1.812	1.905
LS2SWAU/A-61	-10UN	61	.060	1.660	1.740	1.710	1.790	2.214	2.317

1/ Change UN to AN for LS2SWA (armored).

TYPE LS2SWU, LS2SWUA


MIL-C-24643/33

1 through 61 Shielded Pairs, Watertight

Non- Flexing Service, 18 AWG

APPLICATIONS:

Type LS2SWU/A cables are 75 ohm individual shielded multi pair constructions suitable for watertight, non-flexing service. They are available with or without armor. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.

2.INSULATION: Crosslinked polyethylene.

3.PAIR: One black and one white conductor cabled to form pair.

4.SHIELD: Optional binder tape, braided tin-coated copper shield.

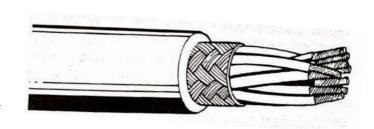
5.IDENTIFICATION: Standard identification code by Method 2.

6.ASSEMBLY: The required number of shielded pairs cabled consecutively, fillers, binder.

7.OVERALL JACKET: Crosslinked polyolefin, surface marking.

(Shield insulation of two polyester tapes on all sizes except LS2SWU-1)

LS2SWUA, same construction with overall braided aluminium armor.


NEC	Military ¹ /Part	Number	Diameter Over Compl.	Overall Jacket		Nomir	Approxim	ate Weight		
NEC Number	Number M24643/	Number of	Pair	Thick.	LS2S	SWU	LS2SWUA		LS2SWU	LS2SWUA
Type & Size	33	Pairs	Min.IN	IN	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS2SWU /A-1	-01UN	1	.213	.012	.240	.255	.290	.305	.103	.130
LS2SWU /A-3	-02UN	3	.213	.060	.670	.710	.720	.760	.207	.228
LS2SWU /A-7	-03UN	7	.213	.060	.860	.910	.910	.960	.358	.392
LS2SWU /A-12	-04UN	12	.213	.070	1.130	1.200	1.190	1.250	.700	.745
LS2SWU /A-19	-05UN	19	.213	.080	1.292	1.380	1.342	1.420	.810	.842
LS2SWU /A-24	-06UN	24	.213	.080	1.500	1.590	1.550	1.640	1.042	1.070
LS2SWU /A-30	-07UN	30	.213	.100	1.670	1.760	1.720	1.810	1.256	1.289
LS2SWU /A-37	-08UN	37	.213	.100	1.785	1.870	1.825	1.920	1.512	1.552
LS2SWU /A-61	-09UN	61	.213	.100	2.205	2.300	2.255	2.350	2.321	2.367

1/ Change UN to AN for LS2SWUA (armored).

TYPE LSMS, LSMSA

MIL-C-24643/34 37 Conductors, with Overall Shield 300 Volts, Non-Watertight Non- Flexing Service, 16 AWG APPLICATIONS:

Type LSMS/A cables are 37 conductor for non-watertight, non-flexing service. They are available with or without armor. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

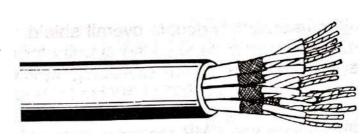
SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Ethylene polyethylene rubber or crosslinked polyethylene.
- ${\bf 3.IDENTIFICATION: Standard\ identification\ code\ by\ Method\ 1.}$
- 4.ASSEMBLY: 37 conductors cabled consecutively with binder.
- 5.SHIELD: Braided tin-coated copper shield.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking. LSMSA, same construction with overall braided aluminium armor.

NEC	Military ¹ / Part	Number of		Nomin	al O.D.		Approxima	ate Weight
Number	Number	Cond.	LS	LSMS LSMSA				LSMSA
Type & Size	M24643/34		Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LSMS/A-37	-01UO	37	.740	.800	.790	.850	.618	.676

1/ Change UN to AN for LSMSA (armored).

TYPE LS3SU, LS3SA, LS3SUS


MIL-C-24643/35

3 through 44 Shielded Triads, Non-Watertight

Non- Flexing Service, 18 AWG

APPLICATIONS:

Type LS3SU/A/S cables are individually shielded multi triad constructions suitable for non-watertight, non-flexing service. They are available with or without armor and with a double overall shield. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.TRIAD: Three conductors (one of each color) cabled to form triad, (optional binder tape).

4.SHIELD: Braided bare copper shield.

5.SHIELD INSULATION: Two sealed polyester tapes.

6.IDENTIFICATION: Standard identification code by Method 2.

7.ASSEMBLY: The required number of shielded triads cabled consecutively, fillers, binder tape.

8.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS3SA, same construction with overall braided aluminium armor.

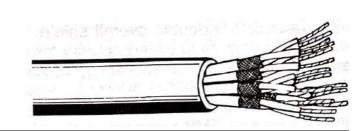
LS3SUS, same construction as LS3SU, with double overall shield.

			Overall	Overall Nominal O.D. IN					Approximate Weight			
NEC Number	Military1/ Part Number	No. Of	Jacket Thick.	LS3	BSU	LS	BSA	LS3	sus	LS3SU	LS3SA	LS3SUS
Type & Size	M24643/35	Triads	IN	Min	Max	Min	Max	Min	Max	Lbs. /Ft	Lbs./ Ft	Lbs./ Ft
LS3SU/A/S-3	-01UN	3	.040	.650	.700	.700	.750	.710	.760	.262	.309	.444
LS3SU/A/S-7	-02UN	7	.050	.840	.910	,890	.960	.900	.970	.528	.587	.792
LS3SU/A/S-10	-03UN	10	.050	1.100	1.190	1.150	1.240	1.160	1.250	.791	.865	1.081
LS3SU/A/S-14	-04UN	14	.050	1.200	1.290	1.250	1.340	1.260	1.350	1.054	1.133	1.416
LS3SU/A/S-19	-05UN	19	.050	1.340	1.430	1.390	1.480	1.400	1.490	1.353	1.442	1.802
LS3SU/A/S-24	-06UN	24	.060	1.580	1.670	1.630	1.720	1.640	1.730	1.799	1.905	2.190
LS3SU/A/S-30	-07UN	30	.060	1.680	1.770	1.730	1.820	1.740	1.830	2.130	2.266	2.665
LS3SU/A/S-37	-08UN	37	.060	1.840	1.930	1.890	1.980	1.900	1.990	2.664	2.791	3.301
1535U/A/S-44	-09UN	44	060	2 060	2 150	2 100	2 200	2 120	2 210	3 273	3 399	3 908

1/ Change UN to AN for LS3SA.

1/ Change UN to UD for LS3SUS.

TYPE LS3SWU, LS3SWA, LS3SWUS


MIL-C-24643/36

3 through 44 Shielded Triads, Watertight

Non- Flexing Service, 18 AWG

APPLICATIONS:

Type LS3SWU/A/S cables are individually shielded multi triad constructions suitable for watertight, non-flexing service. They are available with or without armor and with a double overall shield. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.TRIAD: Three conductors (one of each color) cabled to form triad, (optional binder tape).

4.SHIELD: Braided bare copper shield.

5.SHIELD INSULATION: Two sealed polyester tapes.

6.IDENTIFICATION: Standard identification code by Method 2.

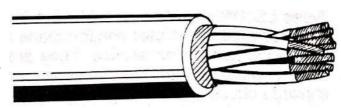
7.ASSEMBLY: The required number of shielded triads cabled consecutively, fillers, binder tape.

8.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS3SWA, same construction with overall braided aluminium armor.

LS3SWUS, same construction as LS3SWU, with double overall shield.

NEC	Military	No.	Overal	Nominal O.D. IN						Approxim	ate Weight	i
Number	1/	Of	1	LS3SWU		LS39	LS3SWA		WUS	LS3SWU	LS3SWA	LS3SWUS
Type & Size	Part	Triads	Jacket									
	Number		Thick.									
	M24643		IN	Min	Max	Min	Max	Min	Max	Lbs. /Ft	Lbs./ Ft	Lbs./ Ft
	/36											
LS3SWU/A/S-3	-01UN	3	.040	.615	.655	.665	.705	.675	.715	.298	.309	.429
LS3SWU/A/S-7	-02UN	7	.040	.880	.880	,930	.990	.940	1.000	.528	.587	.712
LS3SWU/A/S-10	-03UN	10	.050	1.100	1.180	1.150	1.230	1.160	1.240	.791	.865	.988
LS3SWU/A/S-14	-04UN	14	.050	1.200	1.280	1.250	1.330	1.260	1.340	1.052	1.133	1.315
LS3SWU/A/S-19	-05UN	19	.050	1.370	1.450	1.420	1.500	1.430	1.510	1.353	1.442	1.691
LS3SWU/A/S-24	-06UN	24	.050	1.640	1.760	1.690	1.790	1.700	1.800	1.799	1.905	2.068
LS3SWU/A/S-30	-07UN	30	.050	1.760	1.860	1.810	1.910	1.820	1.920	2.156	2.266	2.479
LS3SWU/A/S-37	-08UN	37	.060	1.890	1.990	1.910	2.010	1.950	2.050	2.664	2.781	3.063
LS3SWU/A/S-44	-09UN	44	.060	2.140	2.240	2.190	2.290	2.200	2.300	3.278	3.399	3.605


1/ Change UN to AN for LS3SWA (armored).

1/ Change UN to UD for LS3SWUS (double overall shield)

TYPE LS3U, LS3UA

MIL-C-24643/37 3, 7 and 12 Triads, Non-Watertight Non- Flexing Service, 18 AWG

Type LS3U/A cables are multi triad constructions, and are suitable for non-watertight, non-flexing service. They are available with or without armor. These constructions may be used for interconnect of electronic, communication, and instrumentation systems where RFI shielding is not required.

SPECIFICATIONS:

APPLICATIONS:

1.CONDUCTOR: Stranded bare copper.2.INSULATION: Crosslinked polyethylene.

3.TRIAD: Three conductors (one of each color) cabled to form triad, marker braid on each triad.

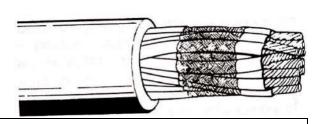
4.IDENTIFICATION: Standard identification code by Method 4.

5.ASSEMBLY: The specified number of triads cabled consecutively with fillers, binder tape.

6.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS3UA, same construction with overall braided aluminium armor.

	Military ¹ /Part	Number	Overall Jacket		Nomi	nal O.D.		Approxin	nate Weight
NEC	Number	of	Thickness	LS	3U	LS	3UA	LS3U	LS3UA
Number	M24643	Triads							
Type & Size	/37		IN	Min. IN	Max. IN	Mix. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS3U/A-3	-01UN	3	.040	.580	.620	.630	.670	.123	.138
LS3U/A-7	-02UN	7	.040	.760	.810	.810	.860	.288	.315
LS3U/A-12	-03UN	12	.050	1.030	1.090	1.080	1.140	.491	.522


1/ Change UN to AN for LS3UA (armored).

TYPE LSECM, LSECMA

MIL-C-24643/38

56 Single Conductors, Plus 8 Shielded Pairs 600 Volts, Watertight, Non- Flexing Service APPLICATIONS:

Type LSECM/A cables are composite constructions consisting of 8 individually twisted, shielded, and jacketed pairs, combined with 8 twisted and jacketed groups, each group consisting of seven conductors, these cables are suitable for watertight, non-flexing service, they are intended for special purpose electronic, communication, and instrumentation applications.

SPECIFICATIONS:

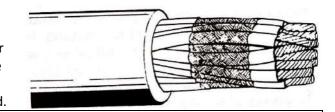
- 1.CONDUCTOR: Twisted pairs: stranded tin-coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.PAIR: One black and one white conductor cabled to form pair, (optional binder tape).
- 4.SHIELD: Tin-coated copper braided shield.
- 5.SHIELD INSULATION: Two sealed polyester tapes.
- 6.IDENTIFICATION: Standard identification code by Method 2.
- 7. GOUPS OF 7: standard tin-coated copper conductor, ethylene propylene rubber or crosslinked polyethylene insulation, 5 black and 2 white conductors cabled to form group of 7, two sealed polyester tapes, standard identification code by Method 2.
- 8.ASSEMBLY: Five shielded pairs cabled to core, 3 pairs and 8 groups of seven cables over the core, fillers, binder tape.
- 9. OVERALL JACKET: Crosslinked polyolefin, surface marking.

LSECMA, same construction with overall braided aluminium armor.

NEC	Military1/ Part	Cond.	No.	No.		Nomin	al O.D.		Approxima	te Weight
Number	Number	Size	Of	Of	LS19	SWU	LS1S	SWA	LS1SWU	LS1SWA
Type & Size	M24643/30	AWG	Pairs	Cond.	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LSECM/A	-01UN	20	8	56	1.290	1.370	1.340	.1.420	1.545	1.600
		18								

1/ Change UN to AN for LSECMA (armored).

TYPE LS1S75MU, LS1S75MA


MIL-C-24643/39

8 Shielded Singles, Non-Watertight

Non- Flexing Service, 22 AWG, 75 Ohm

APPLICATIONS:

Type LS1S75MU/A cables are individually shielded, 75 ohm multi conductor constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.SHIELD: Braided tin-coated copper.

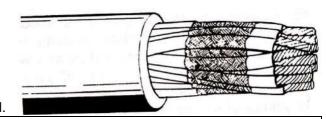
4.SHIELD INSULATION: Two sealed polyester tapes.

5.IDENTIFICATION: Standard identification code by Method 2.

6.ASSEMBLY: Eight shielded conductors cabled consecutively around a central fillers, binder tape.

7.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS1S75MA, same construction with overall braided aluminium armor.


	Military ¹ /	Number	Dia.Over Completed		Nomin	al O.D.		Approxima	ate Weight
NEC	Number	of	Cond.	LS1S7	75MU	LS1S	75MA	LS1S75MU	LS1S75MA
Number	M24643	Cond.							
Type & Size	/39		IN	Min. IN	Max. IN	Mix. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS1S75MU/A-8	-01UN	8	.228	.950	1.030	1.000	1.080	.552	.612

1/ Change UN to AN for LS1S75MUA (armored).

TYPE LS1SMU, LS1SMA

MIL-C-24643/40 5 Shielded Singles, Non-Watertight Non- Flexing Service, 22 AWG, 50 Ohm APPLICATIONS:

Type LS1SMU/A cables are individually shielded, 50 ohm multi conductor constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.SHIELD: Tin-coated copper.

4.SHIELD INSULATION: Two sealed polyester tapes.

5.IDENTIFICATION: Standard identification code by Method 2.

6.ASSEMBLY: Five shielded conductors cabled consecutively around a central fillers with fillers and binder tape.

7.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS1SMA, same construction with overall braided aluminium armor.


NEC	Military ¹ / Part	Number of	Dia.Over Completed		Nomin	al O.D.		Approxima	ate Weight
Number	Number	Cond.	Conductor	LS1S	SMU	LS1SMU	LS1SMA		
Type & Size	M24643/40		IN	Min. IN	Max. IN	Mix. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS1SMU/A-5	-01UN	5	.131	.465	.500	.515	.550	.128	.156

1/ Change UN to AN for LS1SMA (armored).

TYPE LS1SAU, LS1SA

MIL-C-24643/41 44 Shielded Singles, Non-Watertight Non- Flexing Service, 20 AWG APPLICATIONS:

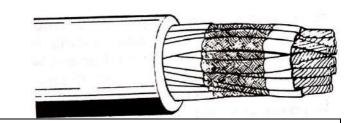
Type LS1SA/U cables are individually shielded multi conductor constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

- ${\bf 1.CONDUCTOR: Stranded\ bare\ copper.}$
- 2.INSULATION: Crosslinked polyethylene.
- 3.SHIELD: Bare copper braided shield over each conductor.
- 4.SHIELD INSULATION: Two sealed polyester tapes.
- 5.IDENTIFICATION: Standard identification code by Method 2.
- 6.ASSEMBLY: 44 conductors cabled consecutively, binder tape.
- 7.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LS1SA, same construction with overall braided aluminium armor.

NEC	Military ¹ / Part	Number		Nomin	al O.D.		Approxima	ate Weight
Number	Number	of	LS1	SAU	LS1	SA	LS1SAU	LS1SA
Type & Size	M24643/34	Conductors	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS1SAU/1SA	-01UN	44	.910	.990	.960	1.040	.638	.698

1/ Change UN to AN for LS1SA (armored).


TYPE LS1SU, LS1SUA

MIL-C-24643/42

36 and 60 Shielded Singles, Non-Watertight

Non- Flexing Service APPLICATIONS:

Type LS1SU/A are individually shielded multi conductor constructions suitable for non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

3.SHIELD: Bare copper braided.

4.SHIELD INSULATION: Two sealed polyester tapes.

5.IDENTIFICATION: Standard identification code by Method 2.

6.FOR LS1SU-36; thirty-two size 20 AWG and four 18 AWG conductors.

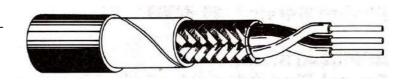
7.FOR LS1SU-60; sixty size 20 AWG conductors.

8.ASSEMBLY: The required conductors cabled consecutively, binder tape.

9. OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS1SUA, same construction with overall braided aluminium armor.

NEC	Military ¹ / Part	Cond.	Dia.Over Completed	No. Of		Nomin	al O.D.		Approxima	te Weight
NEC Number	Number M24643/4	Size	Conductor	Cond.	LS1	.SU	LS1	SUA	LS1SWU	LS1SWA
Type & Size	2	AWG	IN	IN	Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS1SU/A-36	-01UN	20-18	.127	.060	.910	.985	.960	1.036	.642	.702
LS1SU/A-60	-02UN	20	.115	.080	1.210	1.310	1.260	1.360	1.060	1.102


1/ Change UN to AN for LS1SUA (armored).

TYPE LS2SJ, LS2SJA, LS3SJ, LS3SJA, LS4SJ, LS4SJA

MIL-C-24643/43

2, 3, and 4 Conductors, with Overall Shield Non-Watertight, Non- Flexing Service APPLICATIONS:

Type LS2SJ/A, LS3SJ/A, LS4SJ/A, cables are multi conductor shielded constructions. They are suitable to non-watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting and power circuits, where shielding of 400 Hz is required.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper, 14 AWG and smaller, bare copper 12 AWG and larger.
- 2.INSULATION: Ethylene polyethylene rubber or crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 3.
- 4.ASSEMBLY: Two, three or four conductors as required, cabled with fillers.
- 5.SHIELD: Braided tin-coated copper shield, binder tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 7.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 $^{\circ}$ C conductor temperature.
- LS2SJA, LS3SJA, LS4SJA same construction with overall braided aluminium armor.

					Dia.								
	Military ¹	Co	nductor		Over							Appro	ximate
NEC	/Part		Size		Insul.		Nomin	al O.D.		Amps Per		We	ight
Number	Number			No.		LSS	SGU	LSSSGUA		Conductor		LS2SJ	LS2SJA
Type &	M24643/	ASTM	ASTM	Of						40°		Lbs./	Lbs./
Size	43	B286	B8	Cond.	IN	Min.	Max.	Min.	Max.	С	50°C	Ft.	Ft.
LS2SJ/A-22	-01UO	22-19		2	.067	.261	.275	.311	.325	3	2	.050	.060
LS2SJ/A-20	-02UO	20-19		2	.073	.273	.290	.323	.340	6	5	.056	.071
LS2SJ/A-18	-03UO	18-19		2	.084	.295	.310	.345	.360	10	8	.060	.076
LS2SJ/A-16	-04UO	16-19		2	.091	.309	.325	.359	.375	13	11	.074	.093
LS2SJ/A-14	-05UO	14-19		2	.105	.337	.350	.387	.400	16	14	.083	.105
LS2SJ/A-12	-06UO		12(ClassB)	2	.145	.417	.430	.467	.480	23	17	.134	.163
LS2SJ/A-11	-07UO		10(ClassB)	2	.160	.447	.460	.495	.510	31	25	.164	.200
LS2SJ/A-9	-08UO		9(ClassB)	2	.200	.525	.545	.575	.595	42	35	.232	.271
LS2SJ/A-7	-09UO		7(ClassB)	2	.235	.600	.615	.650	.665	56	49	.288	.325
LS3SJ/A-22	-10UO	22-19		3	.067	.271	.285	.321	.335	3	2	.054	.068
LS3SJ/A-20	-11UO	20-19		3	.073	.284	.300	.334	.350	6	5	.064	.081
LS3SJ/A-18	-12UO	18-19		3	.084	.308	.325	.358	.375	9	7	.076	.096
LS3SJ/A-16	-13UO	16-19		3	.091	.323	.340	.373	.390	11	10	.085	.107
LS3SJ/A-14	-14UO	14-19		3	.105	.353	.370	.403	.420	14	12	.101	.128
LS3SJ/A-12	-15UO		12(ClassB)	3	.145	.440	.455	.490	.505	21	15	.170	.207
LS3SJ/A-9	-16UO		9(ClassB)	3	.200	.594	.620	.644	.670	33	27	.310	.350
LS4SJ/A-20	- 17 UO	20-19		4	.073	.303	.320	.353	.370	6	5	.048	.091
LS4SJ/A-16	-18UO	16-19		4	.091	.346	.360	.396	.410	9	7	.079	.133
LS4SJ/A-14	-19UO	14-19		4	.105	.380	.395	.430	.445	11	9	.128	.158

1/ Change UO to AO for LS2SJA, LS3SJA, LS4SJA (armored).

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, Cable Comparison Handbook Electric Shipboard Cable, 1986. Diameters and weights may vary between manufacturers.

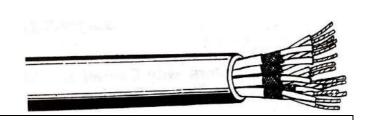
TYPE LS3SF

MIL-C-24643/44 7 Shielded Triads, 600 Volts, Non-Watertight Flexing Service, 18 AWG APPLICATIONS:

Special purpose

1.CONDUCTOR: Stranded bare copper.2.INSULATION: Crosslinked polyethylene.

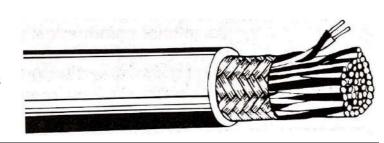
3.TRIAD: Three conductors (one of each color) cabled to form triad, fillers and polyester tape.


4.SHIELD: Braided shield of bare or tin-coated copper. 5.SHIELD INSULATION: Two sealed polyester tapes.

6.IDENTIFICATION: Standard identification code by Method 2.

7.ASSEMBLY: Seven triads conductors cabled consecutively, binder tape.

8.OVERALL JACKET: Crosslinked polyolefin, (double layer reinforced), surface marking.


NEC	Military1/Part Number	Number	Nom	inal O.D.
Number	M24643/44	Of Triads	Min. IN	Max. IN
Type & Size				
LS3SF-7	-01UN	7	1.000	1.040

TYPE LS2U, LS2UA

MIL-C-24643/45 10 Through 60 with Overall Shielded 300 Volts, Non-Watertight Non- Flexing Service, 26 AWG APPLICATIONS:

Type LS2U/A cables are overall shielded multi pair, 135 Ohm constructions for watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

1.CONDUCTOR: Stranded tin-coated copper.

2.INSULATION: Crosslinked polyethylene.

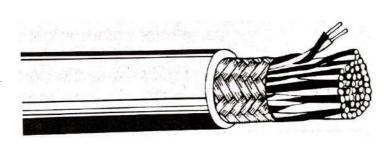
3.IDENTIFICATION: Telephone identification code by Method 3.

4.PAIR: Two conductors cabled to form pair.

5.ASSEMBLY: The rewaired number of pairs cabled consecutively, binder tape.

6.SHIELD: Braided tin-coated copper shield.

7.OVERALL JACKET: Crosslinked polyolefin, surface marking. LS2UA, same construction with overall braided aluminium armor.


	Military ¹ /Part		Overall Jacket		Nomii	Approximate Weight			
NEC Number	Number M24643	Number of	Thickness	LS	2S	LS	2UA	LS2U	LS2UA
Type & Size	/45	Pairs	IN	Min. IN	Max. IN	Mix. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS2U/A-10	-01UO	10	.050	.450	.480	.500	.530	.118	.143
LS2U/A-15	-02UO	15	.050	.530	.560	.580	.610	.164	.191
LS2U/A-19	-03UO	19	.050	.550	.580	.600	.630	.185	.216
LS2U/A-30	-04UO	30	.050	.670	.700	.720	.750	.257	.290
LS2U/A-45	-05UO	45	.050	.830	.870	.880	.920	.360	.394
LS2U/A-60	-06UO	60	.065	.920	.960	.970	1.010	.442	.483

1/ Change UO to AO for LS2UA (armored).

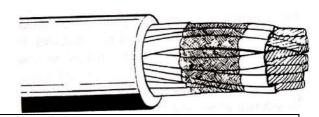
TYPE LS2WAU, LS2WA

MIL-C-24643/46 40 Pairs with Overall Shield, 600 Volts Watertight, Non- Flexing Service, 22 AWG APPLICATIONS:

Type LS2WA/U cables are overall shielded multi pair constructions suitable for watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Telephone identification code by Method 3.
- 4.ASSEMBLY: Two conductors cabled to form pair, forty pairs cabled consecutively with fillers, binder tape.
- 5.SHIELD: Braided shield of tin-coated, binder tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LS2SWA, same construction with overall braided aluminium armor.


NEC	Military ¹ / Part	Number of		Nomin	al O.D.		Approxin	nate Weight
Number	Number	Cond.	LS2S	WAU	LS2S	WA	LS2SWAU	LS2SWA
Type & Size	M24643/46		Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS2WAU/A-40	-01UO	40	1. 320	1.370	1.370	1.420	.741	1.030

1/ Change UO to AO for LS2WA (armored).

TYPE LS1SMWU, LS1SMWA

MIL-C-24643/47 70 Shielded Singles, Watertight Non- Flexing Service, 22AWG APPLICATIONS:

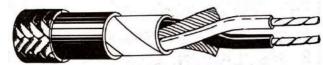
Type LS1SMWU/A, cables are individually shielded multi conductor constructions suitable for watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting and power circuits, where shielding of 400 Hz is required.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.SHIELD: Braided shield of ton-coated copper.
- 5.SHIELD INSULATION: Two sealed polyester tapes.
- 6.ASSEMBLY: Seventy singles cabled consecutively with fillers, binder tape.
- 7.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LS1SMWA, same construction with overall braided aluminium armor.

NEC	Military ¹ / Part	Number of		Nomin	al O.D.		Approxima	ate Weight
Number	Number	Singles	LS1SM	WU	Type LS	1SMWA	LS1SMWU	LS1SMWA
Type & Size	M24643/47		Min. IN	Max. IN	Min. IN	Max. IN	Lbs./ Ft.	Lbs./ Ft.
LS1SMWU/A-70	-01UN	70	1. 465	1.555	1.515	1.605	1.565	2.052

1/ Change UN to AN for LS1SMWA (armored).


TYPE LSDNW, LSDNWA

MIL-C-24643/48

2 Conductors, 1000 Volts, Non-Watertight

Non- Flexing Service APPLICATIONS:

Type LSDNW/A cables are multi conductor armored or unarmoured. These cables may be sued for power, lighting, or weapons control system interconnection except where unusual circuit parameters require a special type of cable. This type cable shall be used only for runs that are either totally within one compartment or totally within two contiguous compartments. However, these type cables shall not be used where a watertight deck or watertight bulkhead below flooding water level II (FWL-II) is penetrated.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper with opaque white separator.

2.INSULATION: Crosslinked polyethylene.

3.IDENTIFICATION: Standard identification code by Method 1.

4.ASSEMBLY: Two conductors cabled consecutively with fillers, binder.

5.OVERALL JACKET: Crosslinked polyolefin, surface marking.

6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSDNWA, same construction with overall braided aluminium armor.

	Military	Cond.	Insul.	Overall Jacket					Δ			
NEC	/Part Number	Size	Thick.	Thick.		Nomina	al O.D. IN		Pe	ips er	Approxim	ate Weight
Number	M24643/			_	LSC	NW	LSDI	NWA	Cond		LSDNW	LSDNWA
Type & Size	48	AWG	IN	IN	Min.	Max.	Min.	Max.	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSDNW/A-3	-01UN	16	.030	.040	.361	.390	.411	.440	13	12	.071	.090
		(class B)										
LSDNW/A-4	-02UN	14	.030	.040	.398	.430	.448	.480	22	20	.092	.112
		(class B)										
LSDNW/A-9	-03UN	10	.030	.040	.504	.545	.554	.595	44	41	.179	.209
		(class B)										
LSDNW/A-14	-04UN	9	.045	.040	.564	.610	.614	.660	60	55	.204	.230
		(class B)										
LSDNW/A-23	-05UN	7	.045	.045	.638	.690	.688	.740	78	72	.292	.329
		(class B)										
LSDNW/A-50	-06UN	3	.045	.050	.842	.910	.892	.960	126	116	.603	.660
		(class C)										
LSDNW/A-75	-07UN	1	.055	.055	1.000	1.080	1.050	1.100	168	185	.882	.939
		(class C)										
LSDNW/A-100	-08UN	0	.055	.055	1.082	1.170	1.132	1.220	199	183	1.058	1.126
1 / Change 11N1		(class D)										

1/ Change UN to AN for LSDNWA (armored).

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.

TYPE LSTNW, LSTNWA

MIL-C-24643/49

3 Conductors, 1000 Volts, Non-Watertight

Non- Flexing Service APPLICATIONS:

Type LSTNW/A cables are multi conductor armored or unarmored. These cables may be used for power, lighting, or weapons control system interconnection except where unusual circuit parameters require a special type of cable. This type cable shall be used only for runs that are either totally within one compartment or totally within two contiguous compartments. However, these type cables shall not be used where a watertight deck or watertight bulkhead below flooding water level II (FWL-II) is penetrated.

SPECIFICATIONS:

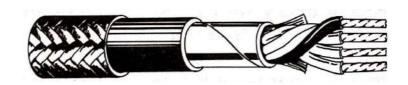
- 1.CONDUCTOR: Stranded bare copper with opaque white separator.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: Three conductors cabled with fillers, binder.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 $^{\circ}$ C conductor temperature.

LSTNWA, same construction with overall braided aluminium armor.

	Military ¹			Overall								
	/Part	Cond.	Insul.	Jacket					Am	nps		
NEC	Number	Size	Thick.	Thick.		Nomina	al O.D. IN		Pe	er	Approxima	ate Weight
Number	M24643/				LST	NW	LST	NWA	Cond	uctor	LSTNW	LSTNWA
Type & Size	49	AWG	IN	IN	Min.	Max.	Min.	Max.	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSTNW/A-3	-01UN	16	.030	.040	.380	.411	.430	.461	11	10	.085	.107
		(class B)										
LSTNW/A-4	-02UN	14	.030	.040	.415	.449	.465	.499	18	17	.107	.130
		(class B)										
LSTNW/A-9	-03UN	10	.030	.040	.578	.625	.628	.675	39	36	.240	.271
		(class B)										
LSTNW/A-14	-04UN	9	.045	.050	.620	.670	.670	.720	51	47	.271	.306
		(class B)										
LSTNW/A-23	-05UN	7	.045	.055	.703	.760	.753	.810	69	64	.390	.427
		(class B)										
LSTNW/A-50	-06UN	3	.045	.060	.869	.969	.919	1.019	110	101	.793	.868
		(class C)										
LSTNW/A-75	-07UN	1	.055	.070	1.048	1.134	1.098	1.184	148	136	1.200	1.276
		(class C)										
LSTNW/A-100	-08UN	0	.055	.075	1.171	1.266	1.221	1.316	174	160	1.452	1.510
		(class D)										
LSTNW/A-150	-09UN	000	.055	.075	1.401	1.515	1.451	1.565	235	216	2.218	2.277
1, 0,		(class D)										

¹/ Change UN to AN for LSTNWA (armored).

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.


TYPE LSFNW, LSFNWA

MIL-C-24643/50

4 Conductors, 1000 Volts, Non-Watertight

Non- Flexing Service APPLICATIONS:

Type LSFNW/A cables are multi conductor armored or unarmored. These cables may be sued for power, lighting, or weapons control system interconnection except where unusual circuit parameters require a special type of cable. This type cable shall be used only for runs that are either totally within one compartment or totally within two contiguous compartments. However, these type cables shall not be used where a watertight deck or watertight bulkhead below flooding water level II (FWL-II) is penetrated.

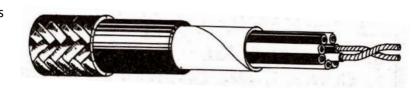
SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper with opaque white separator.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: Four conductors cabled with fillers, binder.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSFNWA, same construction with overall braided aluminium armor.

	Military ¹			Overall								
	/	Cond.	Insul.	Jacket					Am	nps		
	Part	Size	Thick.	Thick.		Nomina	O.D. IN		Pe	er	Approxima	ate Weight
NEC	Number				LSF	NW	LSFN	IWA	Cond	uctor	LSFNW	LSFNWA
Number	M24643/											
Type & Size	50	AWG	IN	IN	Min.	Max.	Min.	Max.	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSFNW/A-3	-01UN	16	.030	.040	.413	.447	.463	.497	11	10	.104	.126
		(class B)										
LSFNW/A-4	-02UN	14	.030	.040	.475	.513	.525	.563	18	17	.141	.164
		(class B)										
LSFNW/A-9	-03UN	10	.030	.040	.583	.630	.635	.680	39	36	.268	.302
		(class B)										
LSFNW/A-23	-04UN	7	.045	.050	.768	.830	.818	.880	69	64	.482	.527
		(class B)										

^{1/} Change UN to AN for LSFNWA (armored).


NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.

TYPE LSMNW, LSMNWA

MIL-C-24643/51 7 Through 44 Conductors, 1000 Volts Non-Watertight, Non- Flexing Service 18AWG

APPLICATIONS:

Type LSMNW/A cables are multi conductor armored or unarmoured. These cables may be sued for power, lighting, or weapons control system interconnection except where unusual circuit parameters require a special type of cable. This type cable shall be used only for runs that are either totally within one compart-ment or totally within two contiguous compartments. However, these type cables shall not be used where a watertight deck or watertight bulkhead below flooding water level II (FWL-II) is penetrated.

SPECIFICATIONS:

- ${\bf 1.CONDUCTOR: Stranded\ bare\ copper.}$
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: The required number of conductors cabled with fillers, binder.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSMNWA, same construction with overall braided aluminium armor.

	Military ¹ / Part						Cold Bend	An	nps		
NEC	Number	Number		Nomina	al O.D. IN		Mandrel		er	Approxim	ate Weight
Number	M24643/5	Of	LSN	1NW	LSMI	NWA	Dia.	Cond	uctor	LSMNW	LSMNWA
Type & Size	1	Cond.	Min. IN	Max. IN	Min. IN	Max. IN	Max. IN	40°C	50°C	Lbs./ Ft.	Lbs./ Ft.
LSMNW/A-7	-01UN	7	.370	.400	.420	.450	3	12/8°	9/6°	.088	.111
LSMNW/A-10	-02UN	10	.457	.495	.507	.545	3	12/8	9/6	.127	.154
LSMNW/A-14	-03UN	14	.494	.535	.544	.585	4	12/8	9/6	.155	.181
LSMNW/A-19	-04UN	19	.545	.590	.590	.640	4	12/8	9/6	.198	.231
LSMNW/A-24	-05UN	24	.633	.685	.683	.735	5	12/6	9/5	.259	.292
LSMNW/A-30	-06UN	30	.670	.725	.720	.775	5	12/6	9/5	.300	.339
LSMNW/A-37	-07UN	37	.726	.783	.776	.835	6	12/6	9/5	.361	.395
LSMNW/A-44	-08UN	44	.823	.890	.873	.940	7	12/5	9/4	.447	.489

1/ Change UN to AN for LSMNWA (armored).

IND/AVG indicates the maximum current per conductor (IND), and the maximum current (AVG) per conductor when all conductors in the cable are used.

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.

TYPE LSTPNW, LTPNWA

MIL-C-24643/52

11/2 Through 40 Pairs, 300 Volts, Non-Watertight

Non-Flexing Service, 22 AWG.

APPLICATIONS:

Type LSTPNW/A cabled are unshielded multi pair constructions, suitable for non-watertight, non-flexing service. They may be used to interconnect audio, telephone, call bell, announcing and alarm systems. They may be used for other interior communication and weapon control systems, provide the ampere rating of the cable and voltage drop for the system are not exceeded.

SPECIFICATIONS:

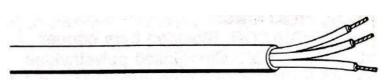
- 1.CONDUCTOR: Stranded bare copper.
- 2.INSULATION: Ethylene propylene rubber or cross-linked polyethylene.
- 3.IDENTIFICATION: Telephone identification code by Method 3.
- 4.PAIR: Two conductors (three for size 1½) cabled to form pair.
- 5.ASSEMBLY: The specified number of pairs cabled consecutively with fillers, binder.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LSTPNW/A, same construction with overall braided aluminium armor.

NEC	Military¹/ Part	Number	Overall Jacket			al O.D.		Approximate Weight		
Number	Number	of	Thick.	LSTI	PNW	LSTP	NWA	LSTPNW	LSTPNWA	
Type & Size	M24643/52	Pairs	IN	Min. IN	Max. IN	Mix. IN	Max. IN	Lbs. /Ft.	Lbs. /Ft.	
LSTPNW/A-1½	-01UN	11/2	.040	.2 17	.235	.267	.285	.024	.032	
LSTPNW/A-3	-02UN	3	.040	.287	.310	.337	.360	.039	.062	
LSTPNW/A-5	-03UN	5	.040	.338	.365	.388	.415	.059	.074	
LSTPNW/A-10	-04UN	10	.040	.435	.470	.485	.520	.104	.126	
LSTPNW/A-15	-05UN	15	.040	.490	.530	.540	.580	.138	.161	
LSTPNW/A-20	-06UN	20	.040	.532	.575	.582	.625	.172	.201	
LSTPNW/A-30	-07UN	30	.050	.629	.680	.679	.730	.255	.288	
LSTPNW/A-40	-08UN	40	.050	.708	.765	.758	.815	.328	.370	

1/ Change UN to AN for LSTPNWA (armored).

TYPE LSSRW, LSDRW, LSTRW, LSSRWA

LSDRWA, LSTRWA


MIL-C-24643/53

1, 2, and 3 Conductors, 3000 Volts, Watertight

Non- Flexing Service, 14 AWG.

APPLICATIONS:

Type LSSRW/A, LSDRW/A, LSTRW/A cables are single conductor, two conductor, and three conductor, they are suitable for watertight, non-flexing service, and may be either armored or unarmoured. They have a 3000 volt rating and may be used for radio application.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded bare copper, (optional separator).
- 2.INSULATION: Black crosslinked polyethylene.
- 3.IDENTIFICATION: Standard identification code by Method 1.
- 4.ASSEMBLY: On types LSDRW and LSTRW two or three conductors cabled with fillers, binder tape.
- 5.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- 6.AMPACITY: Calculated at 60Hz AC (rms) or DC for 75 °C conductor temperature.

LSSRWA, LSDRWA, LSTRWA, same construction with overall braided aluminium armor.

NEC Number	Military ¹ / Part Number	Number of	Nominal O.D.	Amps Per	Conductor	Approximate Weight
Type & Size	M24643/53	Conductors	IN	40°C	50°C	Lbs. /Ft.
LSSRW	-01UN	1	.400	32	30	.106
LSDRW	-02UN	2	.670	26	24	.298
LSTRW	-03UN	3	.710	24	22	.323
LSSRWA	-04UN	1	.450	32	30	.134
LSDRWA	-05UN	2	.720	26	24	.335
ISTRWΔ	-06UN	3	760	24	22	353

1/ Change UN to AN for types LSSRWA, LSDRWA, LSTRWA (armored).

NOTE: Conductor temperature not specified in MIL-HDBIC-XXX, cable comparison handbook Electric Shipboard Cable, 1986.

TYPE LS8NW6, LS8NWA6

MIL-C-24643/54 8 Conductors, Non-Watertight Non-Flexing Service, 22 AWG APPLICATIONS:

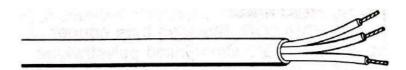
Special purpose, control.

SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.2.INSULATION: Crosslinked polyethylene.

3.IDENTIFICATION: Standard color code by Method 1.

4.ASSEMBLY: 8 conductors cabled together with fillers, binder tape.


5.OVERALL JACKET: Crosslinked polyolefin, surface marking.

LS8NWA6, same construction with overall braided aluminium armor.

NEC			Nominal O.D.	
Number	Military1/Part Number	Number		Approximate Weight
Type & Size	M24643/54	Of Conductors	IN	Lbs. /Ft.
LS8NW6	-01UN	8	.670	.366
LS8NWA6	-01UA	8	.720	.413

TYPE LS4NW8, LS4NWA8

MIL-C-24643/55 4 Conductors, Non-Watertight Non-Flexing Service, 8 AWG APPLICATIONS:

Special purpose, control.

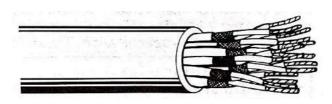
SPECIFICATIONS:

1.CONDUCTOR: Stranded bare copper.2.INSULATION: Crosslinked polyethylene.

3.IDENTIFICATION: Standard color code, Method 1.

4.ASSEMBLY: 4 conductors cabled together with fillers, binder tape.

5.OVERALL JACKET: Crosslinked polyolefin, surface marking.


LS4NWA8, same construction with overall braided aluminium armor.

NEC			Nominal O.D.	
Number	Military ¹ /Part Number	Number		Approximate Weight
Type & Size	M24643/55	Of Conductors	IN	Lbs. /Ft.
LS4NW8	-01UN	4	.740	.612
LS4NWA8	-01AN	4	.790	.691

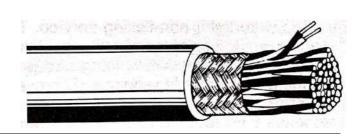
TYPE LS2SWL-7, LS2SWLA-7

MIL-C-24643/56 7 Shielded Pairs, Watertight Non- Flexing Service, 16 AWG APPLICATIONS:

Type LS2SWL/A cables are individually shielded multi pair conductions suitable for watertight, non-flexing service. They are available with or without armor. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400 Hz is required.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tinned coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.PAIR: Two conductors twisted to form pair.
- 4.SHIELD: Tinned copper braid shield.
- 5.ASSEMBLY: 2 polyester tapes, 7 shielded pairs cabled, binder tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LS2SWLA-7, same construction with overall braided aluminium armor.


NEC Number Type & Size	Number M24643/56		Max. Cable Diameter IN	Approximate Weight Lbs. /Ft.
LS2SWL-7	-01UN	.860	.910	.427
LS2SWLA-7	-01AN	.910	.960	.467

TYPE LS2UW-42, LS2UWA-42, LS2UWS-42

MIL-C-24643/57 42 Pairs with Overall Shield, 300 Volts Watertight, Non- Flexing Service 26 AWG

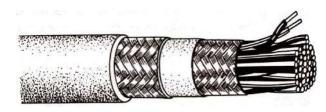
APPLICATIONS:

Type LS2UW/A/S cables are overall shielded multi pair, 115 ohm constructions suitable for watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400Hz is required. The overall shielding of type LS2UWS con-forms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

- 1.CONDUCTOR: Stranded tin-coated copper.
- 2.INSULATION: Crosslinked polyethylene.
- 3.IDENTIFICATION: Telephone identification code by Method 3.
- 4.ASSEMBLY: Two conductors cabled to form pair, 42 pairs cabled consecutively with fillers, binder tape.
- 5.SHIELD: Braided shield of tin-coated copper, separator tape.
- 6.OVERALL JACKET: Crosslinked polyolefin, surface marking.
- LS2UWA-42, same construction with overall braided aluminium armor.

LS2UWS-42, same construction with double overall shield.


NEC		Min. Cable Diameter	Max. Cable Diameter	
r Number	Military Part Number	IN	IN	Approximate Weight
Type & Size	M24643/57			Lbs. /Ft.
LS2UW-42	-01UO	.750	.790	.493
LS2UWA-42	-02AO	.800	.840	.559
LS2UWS-42	-03UD	.800	.840	.665

MILITARY SHIPBOARD CABLES

TYPE LS2CS

MIL-C-24643/58 Pairs, 300 Volts, Non-Watertight Non-Flexing Service, 26 AWG APPLICATIONS:

Type LS2CS cables are double, isolated overall shielded multi pair, 135 ohm constructions suitable for watertight, non-flexing service. They may be used to provide shielded circuits for combat systems, interior communications, lighting, and power, where shielding of 400Hz is required. The overall shielding conforms to the surface transfer impedance and EMP response time requirements of the specification.

SPECIFICATIONS:

- 1. CONDUCTOR: Tinned coated copper.
- 2. INSULATION: Crosslinked polyethylene.
- 3. ASSEMBLY: Conductors twisted to form a pair, required number of pairs cabled.
- 4. SHIELD: Tinned copper braid shield, binder, and tinned copper braid shield, binder tape.
- 5. OVERALL JACKET: Crosslinked polyolefin, surface marking.

NEC Number	Military Part Number	Overall Jacket Thickness	Min. Cable Diameter	Max. Cable Diameter	Approximate Weight
Type and Size	M24643/58	IN	IN	IN	Lbs. /Ft.
LS2CS-6	-01UD	.050	.400	.430	.126
LS2CS-18	-02UD	.050	.550	.590	.235
LS2CS-42	-03UD	.050	.750	.800	.419
LS2CS-60	-04UD	.065	.880	.930	.562
LS2CS-77	-05UD	.085	1.000	1.070	.651